
1

 Laboratory Manual

 ON

 DATA BASE MANAGEMENT SYSTEM LAB

 (For 4th Semester CSE/IT)

Prepared by:

 Sri Ramesh Chandra Sahoo Smt Reetanjali Panda

 Senior Lecturer (CSE&IT) Lecturer(CSE&IT)

 UCP Engineering School UCP Engineering School

 Berhampur. Berhampur.

2

GETTING STARTED WITH ORACLE

What is a database?

A database is an organized collection of structured data stored

electronically in a computer system. In the 1970s, Dr. E.F.Codd, a

computer scientist, invented the relational model for database

management. The relational model deals with many issues caused by

the flat file model. According to his model, data is organized in

entities and attributes, instead of combining everything in a single

structure. By the way, we often refer the entities as tables, records as

rows and fields as columns.

The relational model is better than the flat file model because it

removes the duplicate data e.g. if you put employee and contact

information on the same file. The employee, who has more than one

contact, will appear in multiple rows.

The Relational Database Management System, or RDBMS in short,

manages relational data. Oracle Database is an RDBMS with the

largest market share.

Oracle Database features

Oracle Database allows you to quickly and safely store and retrieve

data. Here are the integration benefits of the Oracle Database:

 Oracle Database is cross-platform. It can run on various

hardware across operating systems including Windows Server,

Unix, and various distributions of GNU/Linux.

3

 Oracle Database has its networking stack that allows application
from a different platform to communicate with the Oracle

Database smoothly. For example, applications running on

Windows can connect to the Oracle Database running on Unix.

 ACID-compliant – Oracle is ACID-compliant Database that

helps maintain data integrity and reliability.

 Commitment to open technologies – Oracle is one of the first
Database that supported GNU/Linux in the late 1990s before

GNU/Linux become a commerce product. It has been supporting

this open platform since then.

Oracle Database has several structural features that make it popular:

 Logical data structure – Oracle uses the logical data structure to

store data so that you can interact with the database without

knowing where the data is stored physically.

 Partitioning – is a high-performance feature that allows you to

divide a large table into different pieces and store each piece

across storage devices.

 Memory caching – the memory caching architecture allows you

to scale up a very large database that still can perform at a high

speed.

 Data Dictionary is a set of internal tables and views that support

administer Oracle Database more effectively.

 Backup and recovery – ensure the integrity of the data in case of

system failure. Oracle includes a powerful tool called Recovery

Manager (RMAN) – allows DBA to perform cold, hot, and

incremental database backups and point-in-time recoveries.

 Clustering – Oracle Real Application Clusters (RAC) – Oracle

enables high availability that enables the system is up and
running without interruption of services in case one or more

server in a cluster fails.

4

Oracle Data Types

In Oracle, every value has a data type which defines a set of

characteristics for the value. These characteristics cause Oracle to

treat values of one data type differently from values of another. For

example, you can add values of the NUMBER data type, but not

values of the RAW data type.

When you create a new table, you specify a data type for each of its

columns. Similarly, when you create a new procedure, you specify a

data type for each of its arguments. The data type defines the allowed

values that each column or argument can store. For example, a DATE

column cannot store a value of February 30, because this is not a valid

date.

Oracle has a number of built-in data types illustrated in the following

table:

Code Data Type

1 VARCHAR2(size [BYTE | CHAR])

1 NVARCHAR2(size)

2 NUMBER[(precision [, scale]])

8 LONG

12 DATE

21 BINARY_FLOAT

22 BINARY_DOUBLE

23 RAW(size)

24 LONG RAW

69 ROWID

https://www.oracletutorial.com/oracle-basics/oracle-number-data-type/
https://www.oracletutorial.com/oracle-basics/oracle-date/
https://www.oracletutorial.com/oracle-basics/oracle-number-data-type/

5

Code Data Type

96 CHAR [(size [BYTE | CHAR])]

96 NCHAR[(size)]

112 CLOB

112 NCLOB

113 BLOB

114 BFILE

Each data type has a code managed internally by Oracle. To find the

data type code of a value in a column, you use the DUMP() function.

Character data types

Character data types consist of CHAR, NCHAR, VARCHAR2,

NVARCHAR2, and VARCHAR

The NCHAR and NVARCHAR2 data types are for storing Unicode

character strings.

The fixed-length character data types are CHAR, NCHAR and the

variable-length character data types are VARCHAR2,

NVARCHAR2.

VARCHAR is the synonym of VARCHAR2. However, you should

not use VARCHAR because Oracle may change its semantics in the

future.

For character data types, you can specify their sizes either in bytes or

characters.

https://www.oracletutorial.com/oracle-basics/oracle-char/
https://www.oracletutorial.com/oracle-basics/oracle-varchar2/

6

Number data type

The NUMBER data type has precision p and scale s. The precision

ranges from 1 to 38 while the scale range from -84 to 127.

If you don’t specify the precision, the column can store values

including fixed-point and floating-point numbers. The default value

for the scale is zero.

Date data types : They are used to store date and time in a table.

Default date data type is “dd-mon-yy”. To view system’s date and
time we can use the SQL function called sysdate(). Oracle uses its

own format to store date in a fixed length of 7 bytes each for

century,month,day,year,hour,minute and second.

RAW and LONG RAW data types

The RAW and LONG RAW data types are for storing binary data or

byte strings e.g., the content of documents, sound files, and video

files.

The RAW data type can store up to 2000 bytes while the LONG

RAW data type can store up to 2GB.

BFILE Datatype

BFILE data type stores a locator to a large binary file which locates

outside the database. The locator consists of the directory and file

names.

BLOB Datatype

BLOB stands for binary large object. You use the BLOB data type to

store binary objects with the maximum size of (4 gigabytes – 1) *

(database block size).

https://www.oracletutorial.com/oracle-basics/oracle-number-data-type/

7

CLOB Datatype

CLOB stands for character large object. You use CLOB to store

single-byte or multibyte characters with the maximum size is (4

gigabytes – 1) * (database block size).

Note that CLOB supports both fixed-with and variable-with character

sets.

NCLOB Datatype

NCLOB is similar to CLOB except that it can store the Unicode

characters.

Data Definition Language:

The Data Definition Language is used to create an object(table),alter

the structure of an object and drop the object created.

1. Oracle CREATE TABLE

To create a new table in Oracle Database, we can use the CREATE

TABLE statement. The following illustrates the basic syntax of the

CREATE TABLE statement:

SQL>CREATE TABLE table_name (

 column_1 data_type column_constraint,

 column_2 data_type column_constraint,
 ...

 table_constraint

);

In this syntax:

 First, specify the table name on the CREATE TABLE clause.

8

 Second, list all columns of the table within the parentheses. In
case a table has multiple columns, we need to separate them by

commas (,). A column definition includes the column name

followed by its data type e.g., NUMBER, VARCHAR2, and a

column constraint such as NOT NULL, primary key, check.

 Third, add table constraints if applicable e.g., primary key,

foreign key, check.

Oracle CREATE TABLE statement example

The following example shows how to create a new table named

persons.

SQL>CREATE TABLE persons(

 person_id NUMBER, first_name VARCHAR2(50) NOT NULL,
 last_name VARCHAR2(50) NOT NULL,

 PRIMARY KEY(person_id));

In this example, the persons table has three columns: person_id,

first_name, and last_name.The data type of the person_id column is

NUMBER. The first_name column has data type VARCHAR2 with

the maximum length is 50. It means that we cannot insert a first name

whose length is greater than 50 into the first_name column. Besides,

the NOT NULL column constraint prevents the first_name column to

have NULL values.The last_name column has the same

characteristics as the first_name column.The PRIMARY KEY clause

specifies the person_id column as the primary key column which is

used for identifying the unique row in the persons table.

2.Oracle ALTER TABLE

To modify the structure of an existing table, we use the ALTER

TABLE statement. The following illustrates the syntax:

SQL>ALTER TABLE table_name action;

In this statement:

https://www.oracletutorial.com/oracle-basics/oracle-data-types/
https://www.oracletutorial.com/oracle-basics/oracle-number-data-type/
https://www.oracletutorial.com/oracle-basics/oracle-varchar2/
https://www.oracletutorial.com/oracle-basics/oracle-not-null/
https://www.oracletutorial.com/oracle-basics/oracle-primary-key/
https://www.oracletutorial.com/oracle-basics/oracle-check-constraint/
https://www.oracletutorial.com/oracle-basics/oracle-primary-key/
https://www.oracletutorial.com/oracle-basics/oracle-foreign-key/
https://www.oracletutorial.com/oracle-basics/oracle-check-constraint/
https://www.oracletutorial.com/oracle-basics/oracle-not-null/
https://www.oracletutorial.com/oracle-basics/oracle-primary-key/

9

 First, specify the table name which we want to modify.

 Second, indicate the action that you want to perform after the

table name.

The ALTER TABLE statement allows you to:

 Add one or more columns

 Modify column definition

 Drop one or more columns

Let’s see some examples to understand how each action works.

Oracle ALTER TABLE examples

Oracle ALTER TABLE ADD column examples

To add a new column to a table, we use the following syntax:

SQL>ALTER TABLE table_name
ADD column_name type constraint;

For example, the following statement adds a new column named

birthdate to the persons table:

ALTER TABLE persons

ADD birthdate DATE NOT NULL;

If you view the persons table, you will see that the birthdate column is

appended at the end of the column list:
DESC persons;

Name Null Type

---------- -------- ------------

PERSON_ID NOT NULL NUMBER
FIRST_NAME NOT NULL VARCHAR2(50)

LAST_NAME NOT NULL VARCHAR2(50)

BIRTHDATE NOT NULL DATE

10

To add multiple columns to a table at the same time, you place the

new columns inside the parenthesis as follows:

SQL>ALTER TABLE table_name
ADD (

 column_name type constraint,

 column_name type constraint,
 ...

);

SQL>ALTER TABLE persons

ADD (

 phone VARCHAR(20),
 email VARCHAR(100)

);

In this example, the statement added two new columns named phone

and email to the persons table.

SQL>DESC persons

Name Null Type

---------- -------- -------------
PERSON_ID NOT NULL NUMBER

FIRST_NAME NOT NULL VARCHAR2(50)
LAST_NAME NOT NULL VARCHAR2(50)

BIRTHDATE NOT NULL DATE

PHONE VARCHAR2(20)
EMAIL VARCHAR2(100)

Oracle ALTER TABLE MODIFY column examples

To modify the attributes of a column, we use the following syntax:

SQL>ALTER TABLE table_name MODIFY column_name type
constraint;

11

For example, the following statement changes the birthdate column to

a null-able column:

SQL>ALTER TABLE persons MODIFY birthdate DATE NULL;

Let’s verify the persons table structure again:
SQL>DESC persons

Name Null Type
PERSON_ID NOT NULL NUMBER

FIRST_NAME NOT NULL VARCHAR2(50)

LAST_NAME NOT NULL VARCHAR2(50)
BIRTHDATE DATE

PHONE VARCHAR2(20)

EMAIL VARCHAR2(100)

We can see, the birthdate became null-able.

To modify multiple columns, you use the following syntax:

SQL>ALTER TABLE table_name MODIFY (column_1 type

constraint, column_2 type constraint, ...);

For example, the following statement changes the phone and email

column to NOT NULL columns and extends the length of the email

column to 255 characters:

SQL> ALTER TABLE persons MODIFY(phone VARCHAR2(20)

NOT NULL,email VARCHAR2(255) NOT NULL);

Let us verify the persons table structure again:

SQL>DESC persons;

Name Null Type
---------- -------- -------------

PERSON_ID NOT NULL NUMBER

FIRST_NAME NOT NULL VARCHAR2(50)
LAST_NAME NOT NULL VARCHAR2(50)

BIRTHDATE DATE

PHONE NOT NULL VARCHAR2(20)
EMAIL NOT NULL VARCHAR2(255)

12

Oracle ALTER TABLE DROP COLUMN example

To remove an existing column from a table, we use the following

syntax:

SQL>ALTER TABLE table_name DROP COLUMN column_name;

This statement deletes the column from the table structure and also

the data stored in that column.

The following example removes the birthdate column from the

persons table:

SQL> ALTER TABLE persons DROP COLUMN birthdate;

Viewing the persons table structure again, we will find that the

birthdate column has been removed:

SQL> DESC persons;

Name Null Type

---------- -------- -------------

PERSON_ID NOT NULL NUMBER
FIRST_NAME NOT NULL VARCHAR2(50)

LAST_NAME NOT NULL VARCHAR2(50)

PHONE NOT NULL VARCHAR2(20)
EMAIL NOT NULL VARCHAR2(255)

To drop multiple columns at the same time, you use the syntax below:

SQL>ALTER TABLE table_name DROP (column_1,column_2,...);

For example, the following statement removes the phone and email

columns from the persons table:

13

SQL>ALTER TABLE persons DROP(email, phone);

Let’s check the persons table again:

SQL>DESC persons;

Name Null Type

---------- -------- ------------
PERSON_ID NOT NULL NUMBER

FIRST_NAME NOT NULL VARCHAR2(50)

LAST_NAME NOT NULL VARCHAR2(50)

3.Oracle DROP TABLE

To move a table to the recycle bin or remove it entirely from the

database, we use the DROP TABLE statement:

SQL>DROP TABLE table_name;

In this statement:

Oracle DROP TABLE examples

The following CREATE TABLE statement creates persons table for

the demonstration:

SQL>CREATE TABLE persons (

 person_id NUMBER,

 first_name VARCHAR2(50) NOT NULL,
 last_name VARCHAR2(50) NOT NULL,

 PRIMARY KEY(person_id)

);

The following example drops the persons table from the database:

SQL>DROP TABLE persons;

https://www.oracletutorial.com/oracle-basics/oracle-create-table/

14

4.Oracle TRUNCATE TABLE:

Oracle introduced the TRUNCATE TABLE statement that allows us

to delete all rows from a big table.

The following illustrates the syntax of the Oracle TRUNCATE

TABLE statement:

SQL>TRUNCATE TABLE table_name;

By default, to remove all rows from a table, we specify the name of

the table that we want to truncate in the TRUNCATE TABLE clause:

Example:

SQL>TRUNCATE TABLE persons;

5.Oracle RENAME Table

To rename a table, we use the following Oracle RENAME table

statement as follows:

SQL>RENAME table_name TO new_name;

In the RENAME table statement:

 First, specify the name of the existing table which we want to

rename.
 Second, specify the new table name. The new name must not be

the same as another table in the same schema.

Note that we cannot roll back a RENAME statement once we

executed it.

When we rename a table, Oracle automatically transfers indexes,

constraints, and grants on the old table to the new one. In addition, it

invalidates all objects that depend on the renamed table such as views,

stored procedures, function, and synonyms.

15

Data Manipulation Language(DML)

These are used to query and manipulate existing objects like tables.

• INSERT INTO/VALUES

• This command is used for inserting values into the rows of a

table (relation).

• Syntax: SQL>INSERT INTO table (column1 [, column2,

column3 ...]) VALUES (value1 [, value2, value3 ...]);

• For example:

• SQL>INSERT INTO ucpes (Author, Subject) VALUES

("anonymous", "computers");

• UPDATE/SET/WHERE

• This command is used for updating or modifying the values of

columns in a table (relation).

• Syntax:

• SQL>UPDATE table_name SET column_name = value [,

column_name = value ...] [WHERE condition];

• For example:

• SQL>UPDATE ucpes SET Author="webmaster" WHERE

Author="anonymous";

• DELETE/FROM/WHERE

• This command is used for removing one or more rows from a

table (relation).

• Syntax:

• SQL>DELETE FROM table_name [WHERE condition];

• SQL>DELETE FROM ucpes WHERE Author="unknown";

16

• SELECT/FROM/WHERE

In Oracle, tables are consists of columns and rows. For example,

the customers table in the sample database has the following

columns: customer_id, name, address, website and credit_limit.

The customers table also has data in these columns.

To retrieve data from one or more columns of a table, we use the

SELECT statement with the following syntax:

SQL>SELECT

 column_1,

 column_2,
 ...

FROM

 table_name;

In this SELECT statement:

 First, specify the table name from which we want to query

the data.

 Second, indicate the columns from which we want to
return the data. If we have more than one column, we need to

separate each by a comma (,).

Oracle SELECT examples

Let’s take some examples of using the Oracle SELECT

statement to understand how it works.

https://www.oracletutorial.com/getting-started/oracle-sample-database/

17

A) query data from a single column

To get the customer names from the customers table, we use the

following statement:

SQL>SELECT
 name

FROM

customers;

The following picture illustrates the result:

B)Querying data from multiple columns

To query data from multiple columns, we specify a list of

comma-separated column names.

The following example shows how to query data from the

customer_id, name, and credit_limit columns of the customer

table.

SQL>SELECT

 customer_id,
 name,

 credit_limit

 FROM
 customers;

18

The following shows the result:

C)Querying data from all columns of a table

The following example retrieves all rows from all columns of

the customers table:

SQL>SELECT
 customer_id,

 name,

 address,
 website,

 credit_limit

 FROM
 customers;

Here is the result:

To make it handy, we can use the shorthand asterisk (*) to

instruct Oracle to return data from all columns of a table as

follows:

19

SQL>SELECT * FROM customers;

Oracle Dual Table

In Oracle, the SELECT statement must have a FROM clause.

However, some queries don’t require any table for example:

SQL>SELECT

 UPPER('This is a string')
 FROM

 what_table

In this case, we might think about creating a table and use it in

the FROM clause for just using the upper() function.

Fortunately, Oracle provides the DUAL table which is a special

table that belongs to the schema of the user SYS but is

accessible to all users. The DUAL table has one column named

DUMMY whose data type is varchar2() and contains one row

with a value X.

SQL>SELECT * FROM dual;

By using the DUAL table, we can call the upper() function as

follows:

SQL>SELECT

 UPPER('This is a string')
 FROM

 Dual;

Besides calling built-in function, we can use expressions in the

SELECT clause of a query that accesses the DUAL table:

https://www.oracletutorial.com/oracle-basics/oracle-select/
https://www.oracletutorial.com/plsql-tutorial/plsql-data-types/

20

SQL>SELECT
 (10+ 5)/2

 FROM

 dual;

The DUAL table is most simple one because it was designed for

fast access.

Oracle ORDER BY Clause

In Oracle, a table stores its rows in unspecified order regardless

of the order which rows were inserted into the database. To

query rows in either ascending or descending order by a column,

we must explicitly instruct Oracle Database that we want to do

so.

For example, we may want to list all customers by their names

alphabetically or display all customers in order of lowest to

highest credit limits.

To sort data, we add the ORDER BY clause to the SELECT

statement as follows:

SQL>SELECT

 column_1,
 column_2,

 column_3,

 ...
 FROM

 table_name

 ORDER BY
 column_1 [ASC | DESC] [NULLS FIRST | NULLS LAST],

 column_1 [ASC | DESC] [NULLS FIRST | NULLS LAST],

 ...

To sort the result set by a column, we list that column after the

ORDER BY clause.

Following the column name is a sort order that can be:

https://www.oracletutorial.com/oracle-basics/oracle-select/
https://www.oracletutorial.com/oracle-basics/oracle-select/

21

 ASC for sorting in ascending order

 DESC for sorting in descending order

By default, the ORDER BY clause sorts rows in ascending order

whether we specify ASC or not. If we want to sort rows in

descending order, you use DESC explicitly. The ORDER BY

clause allows us to sort data by multiple columns where each

column may have different sort orders. The ORDER BY clause

is always the last clause in a SELECT statement.

Oracle ORDER BY clause examples

We will use the customers table in the sample database for

demonstration.

The following statement retrieves customer name, address, and

credit limit from the customers table:
SQL>SELECT

 name,

 address,
 credit_limit

 FROM

 customers;

https://www.oracletutorial.com/getting-started/oracle-sample-database/

22

A) Sorting rows by a column example

To sort the customer data by names alphabetically in ascending

order, we use the following statement:

SQL>SELECT
 name,

 address,

 credit_limit
 FROM

 customers

 ORDER BY
 name ASC;

The ASC instructs Oracle to sort the rows in ascending order.

Because the ASC is optional. If we omit it, by default, the

ORDER BY clause sorts rows by the specified column in

ascending order.

Therefore, the following expression:

ORDER BY name ASC

is equivalent to the following:

ORDER BY name

23

To sort customer by name alphabetically in descending order,

we explicitly use DESC after the column name in the ORDER

BY clause as follows:

SQL>SELECT
 name,

 address,

 credit_limit
 FROM

 customers

 ORDER BY
 name DESC;

The following picture shows the result that customers sorted by

names alphabetically in descending order:

B) Sorting rows by multiple columns example

To sort multiple columns, you separate each column in the

ORDER BY clause by a comma.

See the following contacts table in the sample database.

For example, to sort contacts by their first names in ascending

order and their last names in descending order, we use the

following statement:

https://www.oracletutorial.com/getting-started/oracle-sample-database/

24

SQL>SELECT
 first_name,

 last_name

 FROM
 contacts

 ORDER BY

 first_name,
 last_name DESC;

In this example, Oracle first sorts the rows by first names in

ascending order to make an initial result set. Oracle then sorts

the initial result set by the last name in descending order.

See the following result:

In this result:

 First, the first names are sorted in ascending order.

 Second, if two first names are the same, the last names are

sorted in descending order e..g, Daniel Glass and Daniel

25

Costner, Dianne Sen and Dianne Derek, Doretha Tyler and

 Dorotha Wong.

Oracle SELECT DISTINCT

The DISTINCT clause is used in a SELECT statement to filter

duplicate rows in the result set. It ensures that rows returned are

unique for the column or columns specified in the SELECT

clause.

The following illustrates the syntax of the SELECT DISTINCT

statement:

SQL>SELECT DISTINCT

 column_1
 FROM

 table;

In this statement, the values in the column_1 of the table are

compared to determine the duplicates.

To retrieve unique data based on multiple columns, we need to

specify the column list in the SELECT clause as follows:

SQL>SELECT

 DISTINCT column_1,

 column_2,
 ...

 FROM

 table_name;

 In this syntax, the combination of values in the column_1,

 column_2, and column_3 are used to determine the uniqueness

of the data.

The DISTINCT clause can be used only in the SELECT

statement.

https://www.oracletutorial.com/oracle-basics/oracle-select/

26

Oracle SELECT DISTINCT examples

Let’s look at some examples of using SELECT DISTINCT to

see how it works.

A) Oracle SELECT DISTINCT one column example

See the contacts table in the sample database:

The following example retrieves all contact first names:

SQL>SELECT

 first_name
 FROM

 contacts

 ORDER BY
 first_name;

The query returned 319 rows, indicating that the contacts table

has 319 rows.

https://www.oracletutorial.com/getting-started/oracle-sample-database/

27

To get unique contact first names, we add the DISTINCT

keyword to the above SELECT statement as follows:

SQL>SELECT DISTINCT

 first_name

 FROM
 contacts

 ORDER BY

 first_name;

Now, the result set has 302 rows, meaning that 17 duplicate

rows have been removed.

B) Oracle SELECT DISTINCT multiple columns example

See the following order_items table:

28

The following statement selects distinct product id and quantity

from the order_items table:

SQL>SELECT
 DISTINCT product_id,

 quantity

 FROM
 ORDER_ITEMS

 ORDER BY

 product_id;

The following illustrates the result:

In this example, both values the product_id and quantity

columns are used for evaluating the uniqueness of the rows in

the result set.

Oracle WHERE Clause

The WHERE clause specifies a search condition for rows

returned by the select statement. The following illustrates the

syntax of the WHERE clause:

29

SQL>SELECT
 column_1,

 column_2,

 ...
FROM

 table_name

WHERE
 search_condition

ORDER BY

 column_1,
 column_2;

The WHERE clause appears after the FROM clause but before

the order by clause. Following the WHERE keyword is the

search_condition that defines a condition which returned rows

must satisfy.

Besides the SELECT statement, WE can use the WHERE clause

in the DELETE or UPDATE statement to specify which rows to

update or delete.

Oracle WHERE examples

See the following products table in the sample database:

https://www.oracletutorial.com/oracle-basics/oracle-delete/
https://www.oracletutorial.com/oracle-basics/oracle-update/
https://www.oracletutorial.com/getting-started/oracle-sample-database/

30

A) Selecting rows by using a simple equality operator

The following example returns only products whose names are

'Kingston':

SQL>SELECT
 product_name,

 description,

 list_price,
 category_id

 FROM

 products
 WHERE

 product_name = 'Kingston';

The following picture illustrates the result:

In this example, Oracle evaluates the clauses in the following

order:FROM WHERE and SELECT

1. First, the FROM clause specified the table for querying

data.

2. Second, the WHERE clause filtered rows based on the
condition e.g., product_name = 'Kingston').

3. Third, the SELECT clause chose the columns that should

be returned.

B) Select rows using comparison operator

Besides the equality operator, Oracle provides us with many

other comparison operators illustrated in the following table:

31

Operator Description

= Equality

!=,<> Inequality

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

IN Equal to any value in a list of values

ANY/ SOME / ALL

 Compare a value to a list or subquery.

It must be preceded by another operator
such as =, >, <.

NOT IN

Not equal to any value in a list of

values

[NOT] BETWEEN

n and m
Equivalent to [Not] >= n and <= y.

[NOT] EXISTS
Return true if subquery returns at

least one row

IS [NOT] NULL NULL test

For example, to get products whose list prices are greater than

500, we use the following statement:

SQL>SELECT

 product_name,
 list_price

 FROM

 products
 WHERE

 list_price > 500;

https://www.oracletutorial.com/oracle-basics/oracle-in/
https://www.oracletutorial.com/oracle-basics/oracle-any/
https://www.oracletutorial.com/oracle-basics/oracle-any/
https://www.oracletutorial.com/oracle-basics/oracle-all/
https://www.oracletutorial.com/oracle-basics/oracle-subquery/
https://www.oracletutorial.com/oracle-basics/oracle-in/
https://www.oracletutorial.com/oracle-basics/oracle-between/
https://www.oracletutorial.com/oracle-basics/oracle-not-exists/
https://www.oracletutorial.com/oracle-basics/oracle-exists/

32

C) Select rows that meet some conditions

To combine conditions you can use the AND, OR and NOT

logical operators.

For example, to get all motherboards that belong to the category

id 1 and have list prices greater than 500, we use the following

statement:

SQL>SELECT

 product_name,
 list_price

 FROM

 products
 WHERE

 list_price > 500

 AND category_id = 4;

The result set includes only motherboards whose list prices are

greater than 500.

https://www.oracletutorial.com/oracle-basics/oracle-and/
https://www.oracletutorial.com/oracle-basics/oracle-or/

33

D) Selecting rows that have a value between two values

To find rows that have a value between two values, we use the

BETWEEN operator in the WHERE clause.

For example, to get the products whose list prices are between

650 and 680, we use the following statement:

SQL>SELECT

 product_name,
 list_price

 FROM

 products
 WHERE

 list_price BETWEEN 650 AND 680

 ORDER BY
 list_price;

The following picture illustrates the result set:

34

Note that the following expressions are equivalent:

list_price BETWEEN 650 AND 680
list_price >= 650 AND list_price <= 680

E) Selecting rows that are in a list of values

To query rows that are in a list of values, we use the IN operator

as follows:

SQL>SELECT
 product_name,

 category_id

 FROM
 products

 WHERE

 category_id IN(1, 4)
 ORDER BY

 product_name;

The following illustrates the result:

The expression:

category_id IN (1, 4)

is the same as:

https://www.oracletutorial.com/oracle-basics/oracle-in/

35

category_id = 1 OR category_id = 4

F) Selecting rows which contain value as a part of a string

The following statement retrieves product whose name starts

with Asus:

SQL>SELECT

 product_name,
 list_price

 FROM

 products
 WHERE

 product_name LIKE 'Asus%'

 ORDER BY
 list_price;

In this example, we used the LIKE operator to match rows based

on the specified pattern.

Oracle Alias

When we query data from a table, Oracle uses the column names

of the table for displaying the column heading. For example, the

following statement returns the first name and last name of

employees:

SQL>SELECT

 first_name,

 last_name
 FROM

 employees

 ORDER BY
 first_name;

https://www.oracletutorial.com/oracle-basics/oracle-like/
https://www.oracletutorial.com/oracle-basics/oracle-select/

36

In this example, first_name and last_name column names were

quite clear. However, sometimes, the column names are quite

vague for describing the meaning of data such as:

SQL>SELECT

 lstprc,

 prdnm
 FROM

 long_table_name;

To better describe the data displayed in the output, we can

substitute a column alias for the column name in the query

results.

For instance, instead of using first_name and last_name, we

might want to use forename and surname for display names of

employees.

To instruct Oracle to use a column alias, we simply list the

column alias next to the column name in the SELECT clause as

shown below:

SQL>SELECT

 first_name AS forename,
 last_name AS surname

https://www.oracletutorial.com/oracle-basics/oracle-select/

37

 FROM
 employees;

The AS keyword is used to distinguish between the column

name and the column alias. Because the AS keyword is optional,

we can skip it as follows:

SELECT

 first_name forename,

 last_name surname
FROM

 employees;

Using Oracle column alias to make column heading more

meaningful.

By default, Oracle capitalizes the column heading in the query

result. If we want to change the letter case of the column

heading, we need to enclose it in quotation marks (“”).

SQL> SELECT
 first_name "Forename",

 last_name "Surname"

 FROM
 employees;

https://www.oracletutorial.com/oracle-string-functions/oracle-upper/

38

As shown in the output, the forename and surname column

headings retain their letter cases.

39

STUDENTS’ LABORATORY ACTIVITY

1. Create the EMP table.

2. Show the Structure of EMP table.

3. Create the DEPT table.

4. Show the Structure of DEPT table.

5. Insert 5 rows into the DEPT table.

6. Insert 5 rows into the EMP table.

7. Display all data from EMP table.

8. Display all data from DEPT table.

9. Display unique jobs from the EMP table.

10.Write a query to Name the column headings EMP#,

Employee, Job and Hire date respectively.

11.Create a query to display the Name and salary of

employees earning more than Rs.2850. Save the query and

run it.

12. Display the employee name, job and start date of

employees hire date between Feb.20.1981 and May 1, 1981.

Order the query in ascending order of start date.

13. Display the name and title of all employees who don’t

have a Manager.

14. Display the name, salary and comm. For all employee

who earn comm. Sort data in descending order of salary and

comm.

15. Write a query to display the date. Label the column

DATE.

40

16. Delete the information of student having roll No -15 and

City- Bhubaneswar. Rename the Student database table to

STUDENT INFORMATION.

41

SQL Functions,Set Operators ,Joins and Sub Queries

SQL NUMERIC FUNCTIONS

SQL CHARACTER FUNCTIONS

https://www.google.com/url?sa=i&url=https%3A%2F%2Flogicalread.com%2F2015%2F05%2F29%2Foracle-employ-functions-mc05%2F&psig=AOvVaw3u7d-gjJNaJ_PQ3cF-B4wy&ust=1588687444065000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOCB2oiwmukCFQAAAAAdAAAAABAD

42

SQL AGGREGATE FUNCTIONS

http://logicalread.com/wp-content/uploads/2014/11/tab3-3.jpg
http://logicalread.com/wp-content/uploads/2014/11/tab3-5.jpg

43

Oracle AND Operator

The AND operator is a logical operator that combines Boolean

expressions and returns true if both expressions are true. If one of

the expressions is false, the AND operator returns false.

The syntax of the AND operator is as follows:

expression_1 AND expression_2

Typically, AND is used in the WHERE clause of the SELECT,

DELETE, and UPDATE statements to form a condition for

matching data. In addition, we use the AND operator in the

predicate of the JOIN clause to form the join condition.

When we use more than one logical operator in a statement,

Oracle always evaluates the AND operators first. However, we

can use parentheses to change the order of evaluation.

Oracle AND operator examples

See the following orders table in the sample database:

A) Oracle AND to combine two Boolean expressions example

The following example finds orders of the customer 2 with the

pending status:

SQL>SELECT

https://www.oracletutorial.com/oracle-basics/oracle-where/
https://www.oracletutorial.com/oracle-basics/oracle-select/
https://www.oracletutorial.com/oracle-basics/oracle-delete/
https://www.oracletutorial.com/oracle-basics/oracle-update/
https://www.oracletutorial.com/oracle-basics/oracle-inner-join/
https://www.oracletutorial.com/getting-started/oracle-sample-database/

44

 order_id,
 customer_id,

 status,

 order_date
 FROM

 orders

 WHERE
 status = 'Pending'

 AND customer_id = 2

 ORDER BY
 order_date;

In this example, the query returned all orders that satisfy both

expressions:

status = 'Pending'

and

customer_id = 2

Here is the result:

B) Oracle AND to combine more than two Boolean

expressions example

we can use multiple AND operators to combine Boolean

expressions.

For example, the following statement retrieves the orders that

meet all the following conditions:

 placed in 2017

 is in charge of the salesman id 60

45

 has the shipped status.

 SQL>SELECT

 order_id,

 customer_id,
 status,

 order_date

 FROM
 orders

 WHERE

 status = 'Shipped'
 AND salesman_id = 60

 AND EXTRACT(YEAR FROM order_date) = 2017

 ORDER BY
 order_date;

 in this example, we used the EXTRACT() function to get the

YEAR field from the order date and compare it with 2017.

 C) Oracle AND to combine with OR operator example

 we can combine the AND operator with other logical operators

such as OR and NOT to form a condition.

 For example, the following query finds order placed by

customer id 44 and has status canceled or pending.

SQL>SELECT order_id, customer_id, status, salesman_id,
order_date FROM orders WHERE (status = 'Canceled' OR status

= 'Pending') AND customer_id = 44 ORDER BY order_date;

https://www.oracletutorial.com/oracle-date-functions/oracle-extract/
https://www.oracletutorial.com/oracle-basics/oracle-or/

46

Oracle OR Operator

The OR operator is a logical operator that combines Boolean

expressions and returns true if one of the expressions is true.

The following illustrates the syntax of the OR operator:

expression_1 AND expression_2

We often use the OR operator in the WHERE clause of the

SELECT, DELETE, and UPDATE statements to form a

condition for filtering data.

If we use multiple logical operators in a statement, Oracle

evaluates the OR operators after the NOT and AND operators.

However, we can change the order of evaluation by using

parentheses.

Oracle OR operator examples

We will use the orders table in the sample database for the

demonstration.

A)using Oracle OR operator to combine two Boolean

expressions example

The following example finds orders whose status is pending or

canceled:

https://www.oracletutorial.com/oracle-basics/oracle-where/
https://www.oracletutorial.com/oracle-basics/oracle-select/
https://www.oracletutorial.com/oracle-basics/oracle-delete/
https://www.oracletutorial.com/oracle-basics/oracle-update/
https://www.oracletutorial.com/oracle-basics/oracle-and/
https://www.oracletutorial.com/getting-started/oracle-sample-database/

47

SQL>SELECT
 order_id,

 customer_id,

 status,
 order_date

 FROM

 orders
 WHERE

 status = 'Pending'

 OR status = 'Canceled'
 ORDER BY

 order_date DESC;

In this example, the statement returned all orders that satisfy one

of the following expressions:

status = 'Pending'

status = 'Canceled'

The following picture illustrates the result:

B) Using Oracle OR operator to combine more than two

Boolean expressions example

We often use the OR operators to combine more than two

Boolean expressions. For example, the following statement

48

retrieves the orders which are in charge of one of the following

the salesman id 60, 61 or 62:

SQL>SELECT
 order_id,

 customer_id,

 status,
 salesman_id,

 order_date

 FROM
 orders

 WHERE

 salesman_id = 60
 OR salesman_id = 61

 OR salesman_id = 62

 ORDER BY
 order_date DESC;

Here is the result:

Instead of using multiple OR operators, we can use the IN

operator as shown in the following example:

SQL>SELECT

 order_id,

 customer_id,

https://www.oracletutorial.com/oracle-basics/oracle-in/

49

 status,
 salesman_id,

 order_date

 FROM
 orders

 WHERE

 salesman_id IN(
 60,

 61,

 62
)

 ORDER BY

 order_date DESC;

This query returns the same result as the one that uses the OR

operator above.

C) Using Oracle OR operator to combine with AND operator

example

We can combine the OR operator with other logical operators

such as AND and NOT to form a condition. For example, the

following query returns the orders that belong to the customer id

44 and have canceled or pending status.

SQL>SELECT

 order_id,

 customer_id,
 status,

 salesman_id,

 order_date
 FROM

 orders

 WHERE
 (

 status = 'Canceled'

 OR status = 'Pending'

https://www.oracletutorial.com/oracle-basics/oracle-and/

50

)
 AND customer_id = 44

 ORDER BY

 order_date;

Oracle NOT IN example

The example shows how to find orders whose statuses are not

Shipped and Canceled:

SQL>SELECT

 order_id,

 customer_id,
 status,

 salesman_id

 FROM
 orders

 WHERE

 status NOT IN(
 'Shipped',

 'Canceled'

)
ORDER BY

order_id;

The result is:

51

 Oracle IN subquery example

The following example returns the id, first name, and last name

of salesmen who are in charge of orders that were canceled

SQL>SELECT
 employee_id,

 first_name,

 last_name
 FROM

 employees

 WHERE
 employee_id IN(

 SELECT

 DISTINCT salesman_id
 FROM

 orders

 WHERE
 status = 'Canceled'

)

 ORDER BY
 first_Name;

52

In this example, the subquery executes first and returns a list of

salesman ids:

SQL>SELECT
 DISTINCT salesman_id

 FROM

 orders
 WHERE

 status = 'Canceled'

And these salesman ids are used for the outer query which finds

all employees whose ids are equal to any id in the salesman id list

Oracle NOT IN subquery example

See the following customers and orders tables:

53

The following example uses the NOT IN to find customers who

have not placed any orders:

SQL>SELECT

 customer_id,

 name
 FROM

 customers

 WHERE
 customer_id NOT IN(

 SELECT

 customer_id
 FROM

 orders

);

E) Oracle IN vs. OR

The following example shows how to get the sales orders of

salesman 60, 61, and 62:

54

SQL>SELECT
 customer_id,

 status,

 salesman_id
 FROM

 orders

 WHERE
 salesman_id IN(

 60,

 61,
 62

)

 ORDER BY
 customer_id;

It is equivalent to:

SQL>SELECT

 customer_id,
 status,

 salesman_id

 FROM
 orders

 WHERE

 salesman_id = 60
 OR salesman_id = 61

 OR salesman_id = 62

 ORDER BY

55

 customer_id;

Note that the expression:

salesman_id NOT IN (60,61,62);

has the same effect as:

salesman_id != 60

AND salesman_id != 61
AND salesman_id != 62;

Oracle LIKE

Sometimes, you want to query data based on a specified pattern.

For example, you may want to find contacts whose last names

start with 'St' or first names end with 'er'. In this case, we use the

Oracle LIKE operator.

The syntax of the Oracle LIKE operator is as follows:

expresion [NOT] LIKE pattern

In this syntax, we have:

1) expression

The expression is a column name or an expression that we want

to test against the pattern.

2) pattern

The pattern is a string to search for in the expression. The pattern

includes the following wildcard characters:

 % (percent) matches any string of zero or more character.

 _ (underscore) matches any single character.

https://www.oracletutorial.com/oracle-basics/oracle-select/

56

The LIKE operator returns true if the expression matches the

pattern. Otherwise, it returns false.

The NOT operator, if specified, negates the result of the LIKE

operator.

Oracle LIKE examples

Let’s take some examples of using the Oracle LIKE operator to

see how it works.

We will use the contacts table in the sample database for the

demonstration:

A) % wildcard character examples

The following example uses the % wildcard to find the phones of

contacts whose last names start with 'St':

SQL>SELECT

 first_name,
 last_name,

 phone

 FROM
 contacts

 WHERE

 last_name LIKE 'St%'

https://www.oracletutorial.com/getting-started/oracle-sample-database/

57

 ORDER BY
 last_name;

The following picture illustrates the result:

In this example, we used the pattern:

'St%'

The LIKE operator matched any string that starts with 'St' and is

followed by any

number of characters e.g., Stokes, Stein, or Steele, etc.

To find the phone numbers of contacts whose last names end with

the string 'er', you use the following statement:

SQL>SELECT

 first_name,

 last_name,
 phone

 FROM

 contacts
 WHERE

 last_name LIKE '%er'

 ORDER BY
 last_name;

Here is the result:

58

The pattern:

%er

matches any string that ends with the 'er' string.

To perform a case-insensitive match, we use either LOWER() or

UPPER() function as follows:

UPPER(last_name) LIKE 'ST%'

LOWER(last_name LIKE 'st%'

For example, the following statement finds emails of contacts

whose first names start with CH:

SQL>SELECT

 first_name,
last_name,

 email

FROM
 contacts

WHERE

 UPPER(first_name) LIKE 'CH%';
ORDER BY

 first_name;

Here is the result:

59

The following example uses the NOT LIKE operator to find

contacts whose phone numbers do not start with '+1':

SQL>SELECT

 first_name, last_name, phone
FROM

 contacts

WHERE
 phone NOT LIKE '+1%'

ORDER BY

 first_name;

The result is:

B) _ wildcard character examples

The following example finds the phone numbers and emails of

contacts whose first names have the following pattern 'Je_i':

SQL>SELECT

60

 first_name,
 last_name,

 email,

 phone
 FROM

 contacts

 WHERE
 first_name LIKE 'Je_i'

 ORDER BY

 first_name;

Here is the result:

The pattern 'Je_i' matches any string that starts with 'Je', followed

by one character, and then followed by 'i' e.g., Jeri or Jeni, but not

Jenni.

C) Mixed wildcard characters example

We can mix the wildcard characters in a pattern. For example, the

following statement finds contacts whose first names start with Je

followed by two characters and then any number of characters. In

other words, it will match any last name that starts with Je and

has at least 3 characters:

SQL>SELECT

 first_name,

 last_name,
 email,

 phone

 FROM
 contacts

61

 WHERE
 first_name LIKE 'Je_%';

Oracle Joins

Oracle join is used to combine columns from two or more tables

based on values of the related columns. The related columns are

typically the primary key column(s) of the first table and foreign

key column(s) of the second table.

Oracle supports inner join, left join, right join, full outer join and

cross join.

Note that you can join a table to itself to query hierarchical data

using an inner join, left join, or right join. This kind of join is

known as self-join.

Setting up sample tables

We will create two new tables with the same structure for the

demonstration:

SQL>CREATE TABLE palette_a (

 id INT PRIMARY KEY,

 color VARCHAR2 (100) NOT NULL

https://www.oracletutorial.com/oracle-basics/oracle-primary-key/
https://www.oracletutorial.com/oracle-basics/oracle-foreign-key/
https://www.oracletutorial.com/oracle-basics/oracle-foreign-key/
https://www.oracletutorial.com/oracle-basics/oracle-inner-join/
https://www.oracletutorial.com/oracle-basics/oracle-left-join/
https://www.oracletutorial.com/oracle-basics/oracle-right-join/
https://www.oracletutorial.com/oracle-basics/oracle-full-outer-join/
https://www.oracletutorial.com/oracle-basics/oracle-cross-join/
https://www.oracletutorial.com/oracle-basics/oracle-self-join/
https://www.oracletutorial.com/oracle-basics/oracle-create-table/

62

);

SQL>CREATE TABLE palette_b (

 id INT PRIMARY KEY,
 color VARCHAR2 (100) NOT NULL

);

SQL>INSERT INTO palette_a (id, color)

VALUES (1, 'Red');

SQL>INSERT INTO palette_a (id, color)

VALUES (2, 'Green');

SQL>INSERT INTO palette_a (id, color)
VALUES (3, 'Blue');

SQL>INSERT INTO palette_a (id, color)
VALUES (4, 'Purple');

-- insert data for the palette_b

SQL>INSERT INTO palette_b (id, color)

VALUES (1, 'Green');

SQL>INSERT INTO palette_b (id, color)

VALUES (2, 'Red');

SQL>INSERT INTO palette_b (id, color)
VALUES (3, 'Cyan');

SQL>INSERT INTO palette_b (id, color)

VALUES (4, 'Brown');

The tables have some common colors such as Red and Green.

Let’s call the palette_a the left table and palette_b the right table:

63

Oracle inner join

The following statement joins the left table to the right table

using the values in the color column:
SQL>SELECT

 a.id id_a,

 a.color color_a,
 b.id id_b,

 b.color color_b

FROM
 palette_a a

INNER JOIN palette_b b ON a.color = b.color;

Here is the output:

As can be seen clearly from the result, the inner join returns rows

from the left table that match with the rows from the right table.

The following Venn diagram illustrates an inner join when

combining two result sets:

64

Oracle left join

The following statement joins the left table with the right table

using a left join (or a left outer join):

SQL>SELECT

 a.id id_a,

 a.color color_a,
 b.id id_b,

 b.color color_b

FROM
 palette_a a

LEFT JOIN palette_b b ON a.color = b.color;

The output is shown as follows:

The left join returns all rows from the left table with the matching

rows if available from the right table. If there is no matching row

found from the right table, the left join will have null values for

the columns of the right table:

65

The following Venn diagram illustrates the left join:

Sometimes, we want to get only rows from the left table that do

not exist in the right table. To achieve this, we use the left join

and a WHERE clause to exclude the rows from the right table.

For example, the following statement shows colors that only

available in the palette_a but not palette_b:

SQL>SELECT

 a.id id_a,

 a.color color_a,
 b.id id_b,

 b.color color_b

 FROM
 palette_a a

 LEFT JOIN palette_b b ON a.color = b.color

 WHERE b.id IS NULL;

Here is the output:

66

The following Venn diagram illustrates the left join with the

exclusion of rows from the right table:

Oracle right join

The right join or right outer join is a reversed version of the left

join. The right join makes a result set that contains all rows from

the right table with the matching rows from the left table. If there

is no match, the left side will have nulls.

The following example use right join to join the left table to the

right table:

SQL>SELECT

 a.id id_a,

 a.color color_a,
 b.id id_b,

 b.color color_b

 FROM

67

 palette_a a
 RIGHT JOIN palette_b b ON a.color = b.color;

Here is the output:

The following Venn diagram illustrates the right join:

Likewise, we can get only rows from the right table but not the

left table by adding a WHERE clause to the above statement as

shown in the following query:

SQL>SELECT

 a.id id_a,
 a.color color_a,

 b.id id_b,

 b.color color_b
 FROM

 palette_a a

 RIGHT JOIN palette_b b ON a.color = b.color

68

 WHERE a.id IS NULL;

Here is the output:

The following Venn diagram illustrates the right join with the

exclusion of rows from the left table:

Oracle full outer join

Oracle full outer join or full join returns a result set that contains

all rows from both left and right tables, with the matching rows

from both sides where available. If there is no match, the missing

side will have nulls.

The following example shows the full outer join of the left and

right tables:

SQL>SELECT

https://www.oracletutorial.com/oracle-basics/oracle-full-outer-join/
https://www.oracletutorial.com/oracle-basics/oracle-full-outer-join/

69

 a.id id_a,
 a.color color_a,

 b.id id_b,

 b.color color_b
 FROM

 palette_a a

 FULL OUTER JOIN palette_b b ON a.color = b.color;

The following picture illustrates the result set of the full outer

join:

Note that the OUTER keyword is optional.

The following Venn diagram illustrates the full outer join:

To get a set of rows that are unique from the left and right tales,

you perform the same full join and then exclude the rows that you

don’t want from both sides using a WHERE clause as follows:

https://www.oracletutorial.com/oracle-basics/oracle-where/

70

SQL>SELECT
 a.id id_a,

 a.color color_a,

 b.id id_b,
 b.color color_b

 FROM

 palette_a a
 FULL JOIN palette_b b ON a.color = b.color

 WHERE a.id IS NULL OR b.id IS NULL;

Here is the result:

The following Venn diagram illustrates the above operation:

A self join is a join that joins a table with itself. A self join is

useful for comparing rows within a table or querying hierarchical

data.

https://www.oracletutorial.com/oracle-basics/oracle-select/

71

A self join uses other joins such as inner join and left join. In

addition, it uses the table alias to assign the table different names

in the same query.

Note that referencing the same table more than once in a query

without using table aliases cause an error.

The following illustrates how the table T is joined with itself:

SQL>SELECT
 column_list

 FROM

 T t1
 INNER JOIN T t2 ON

 join_predicate;

Note that besides the inner join, you can use the left join in the

above statement.

Oracle Self Join example

Let’s look at some examples of using Oracle self join.

A) Using Oracle self join to query hierarchical data example

See the following employees table in the sample database.

https://www.oracletutorial.com/oracle-basics/oracle-joins/
https://www.oracletutorial.com/oracle-basics/oracle-inner-join/
https://www.oracletutorial.com/oracle-basics/oracle-left-join/
https://www.oracletutorial.com/oracle-basics/oracle-alias/
https://www.oracletutorial.com/oracle-basics/oracle-alias/
https://www.oracletutorial.com/oracle-basics/oracle-inner-join/

72

The employees table stores personal information such as id,

name, job title. In addition, it has the manager_id column that

stores the reporting lines between employees.

The President of the company, who does not report to anyone,

has a NULL value in the manager_id column. Other employees,

who have a manager, have a numeric value in the

manager_id column, which indicates the id of the manager.

To retrieve the employee and manager data from the employees

table, we use a self join as shown in the following statement:

SQL>SELECT
 (e.first_name || ' ' || e.last_name) employee,

 (m.first_name || ' ' || m.last_name) manager,

 e.job_title
 FROM

 employees e
 LEFT JOIN employees m ON

 m.employee_id = e.manager_id

 ORDER BY
 manager;

This query references to the employees table twice: one as e (for

employee) and another as m (for manager). The join predicate

matches employees and managers using the employee_id and

 manager_id columns.

The following picture shows the result:

73

B) Using Oracle self join to compare rows within the same

table example

The following statement finds all employees who have the same

hire dates:

SQL>SELECT
 e1.hire_date,

 (e1.first_name || ' ' || e1.last_name) employee1,

 (e2.first_name || ' ' || e2.last_name) employee2
FROM

 employees e1

INNER JOIN employees e2 ON
 e1.employee_id > e2.employee_id

 AND e1.hire_date = e2.hire_date

ORDER BY
 e1.hire_date DESC,

 employee1,

employee2;

74

The e1 and e2 are table aliases for the same employees table.

Oracle GROUP BY

The GROUP BY clause is used in a select statement to group

rows into a set of summary rows by values of columns or

expressions. The GROUP BY clause returns one row per group.

The GROUP BY clause is often used with aggregate functions

such as avg(),count(),max(),min() and sum(). In this case, the

aggregate function returns the summary information per group.

For example, given groups of products in several categories, the

avg() function returns the average price of products in each

category, the count() function returns the total number of price of

products in each category, the max() function returns the

maximum price of products in each category, the min() function

returns the minimum price of products in each category, the

75

sum() function returns the sum of price of products in each

category.

The following illustrates the syntax of the Oracle GROUP BY

clause:

SQL>SELECT
 column_list

 FROM

 T
 GROUP BY c1,c2,c3;

The GROUP BY clause appears after the FROM clause. In case

WHERE clause is presented, the GROUP BY clause must be

placed after the WHERE clause as shown in the following query:

SQL>SELECT

 column_list

 FROM
 T

 WHERE

 condition
 GROUP BY c1, c2, c3;

The GROUP BY clause groups rows by values in the grouping

columns such as c1, c2 and c3. The GROUP BY clause must

contain only aggregates or grouping columns.

Oracle GROUP BY examples

We will use the following orders and order_items in the database

for the demonstration:

76

A) Oracle GROUP BY basic example

The following statement uses the GROUP BY clause to find

unique order statuses from the orders table:

SQL> SELECT

 status

 FROM
 orders

 GROUP BY

 status;

This statement has the same effect as the following statement that

uses the distinct operator:

SQL>SELECT

 DISTINCT status

 FROM
 orders;

B) Oracle GROUP BY with an aggregate function example

The following statement returns the number of orders by

customers:

SQL>SELECT

77

 customer_id,
 COUNT(order_id)

 FROM

 orders
 GROUP BY

 customer_id

 ORDER BY
 customer_id;

In this example, we grouped the orders by customers and used the

function to return the number of orders per group.

To get more meaningful data, we can join the orders table with

the customers table as follows:

SQL>SELECT

 name,

 COUNT(order_id)
 FROM

 orders

 INNER JOIN customers
 USING(customer_id)

 GROUP BY

 name
 ORDER BY

 name;

Here is the result:

78

C) Oracle GROUP BY with WHERE clause example

This example uses the GROUP BY clause with a where clause to

return the number of shipped orders for every customer:

SQL>SELECT
 name,

 COUNT(order_id)

 FROM orders
 INNER JOIN customers USING(customer_id)

 WHERE

 status = 'Shipped'
 GROUP BY

 name

 ORDER BY
 name;

Here is the output:

79

Note that the Oracle always evaluates the condition in the

WHERE clause before the GROUP BY clause.

Oracle HAVING

The HAVING clause is an optional clause of the select statement.

It is used to filter groups of rows returned by the group by clause.

This is why the HAVING clause is usually used with the GROUP

BY clause.

The following illustrates the syntax of the Oracle HAVING

clause:

SQL>SELECT
 column_list

 FROM

 T
 GROUP BY

 c1

 HAVING
 group_condition;

80

In this statement, the HAVING clause appears immediately after

the GROUP BY clause.

If we use the HAVING clause without the GROUP BY clause,

the HAVING clause works like the where clause.

Note that the HAVING clause filters groups of rows while the

WHERE clause filters rows. This is a main difference between

the HAVING and WHERE clauses.

Oracle HAVING clause example

We will use the order_items in the database for the

demonstration.

 Simple Oracle HAVING example

The following statement uses the GROUP BY clause to retrieve

the orders and their values from the order_items table:

SQL>SELECT

 order_id,

 SUM(unit_price * quantity) order_value
 FROM

 order_items

 GROUP BY
 order_id

 ORDER BY

81

 order_value DESC;

Here is the result:

To find the orders whose values are greater than 1 million, you

add a HAVING clause as follows:

SQL>SELECT
 order_id,

 SUM(unit_price * quantity) order_value

 FROM
 order_items

 GROUP BY

 order_id
 HAVING

 SUM(unit_price * quantity) > 1000000

 ORDER BY
 order_value DESC;

The result is:

82

In this example:

 First, the GROUP BY clause groups orders by their ids and
calculates the order values using the sum() function.

 Then, the HAVING clause filters all orders whose values are

less than or equal to 1,000,000.

Oracle UNION

The UNION operator is a set operator that combines result sets of

two or more select statements into a single result set.

The following illustrates the syntax of the UNION operator that

combines the result sets of two queries:

SQL>SELECT
 column_list_1

 FROM

 T1
 UNION

 SELECT

 column_list_1
 FROM

 T2;

In this statement, the column_list_1 and column_list_2 must have

the same number of columns presented in the same order. In

83

addition, the datatype of the corresponding column must be in the

same data type group.

By default, the UNION operator returns the unique rows from

both result sets. If we want to retain the duplicate rows, you

explicitly use UNION ALL as follows:

SQL>SELECT
 column_list

 FROM

 T1
 UNION ALL

 SELECT

 column_list
 FROM

 T2;

Oracle UNION illustration

Suppose, we have two tables T1 and T2:

 T1 has three rows 1, 2 and 3

 T2 also has three rows 2, 3 and 4

The following picture illustrates the UNION of T1 and T2 tables:

The UNION removed the duplicate rows 2 and 3

Oracle UNION examples

84

See the following employees and contacts tables in the database.

Oracle UNION example

Suppose, we have to send out emails to the email addresses from

both employees and contacts tables. To accomplish this, first, we

need to compose a list of email addresses of employees and

contacts. And then send out the emails to the list.

The following statement uses the UNION operator to build a list

of contacts from the employees and contacts tables:

SQL>SELECT

 first_name,
 last_name,

 email,

 'contact'
 FROM

85

 contacts
 UNION SELECT

 first_name,

 last_name,
 email,

 'employee'

 FROM
 employees;

Here is the result:

 Oracle UNION ALL example

The following statement returns the unique last names of

employees and contacts:

SQL>SELECT

 last_name

 FROM
 employees

 UNION SELECT

 last_name
 FROM

 contacts

86

 ORDER BY
 last_name;

The query returned 357 unique last names.

However, if we use UNION ALL instead of UNION in the query

as follows:

SQL>SELECT

 last_name

 FROM
 employees

 UNION ALL SELECT
 last_name

 FROM

 contacts
 ORDER BY

 last_name;

The query returns 426 rows. In addition, some rows are duplicate

e.g., Atkinson, Barnett. This is because the UNION ALL operator

does not remove duplicate rows.

87

Oracle UNION vs. JOIN

A UNION places a result set on top another, meaning that it

appends result sets vertically. However, a join such as inner join

or left join combines result sets horizontally.

The following picture illustrates the difference between union

and join:

88

Oracle INTERSECT

The Oracle INTERSECT operator compares the result of two

queries and returns the distinct rows that are output by both

queries.

The following statement shows the syntax of the INTERSECT

operator:

SQL>SELECT
 column_list_1

 FROM

 T1
 INTERSECT

 SELECT
 column_list_2

 FROM

 T2;

Similar to the UNION operator, you must follow these rules

when using the INTERSECT operator:

 The number and the order of columns must be the same in the

two queries.

 The datatype of the corresponding columns must be in the same

data type group.

Oracle INTERSECT illustration

Suppose we have two queries that return the T1 and T2 result set.

 T1 result set includes 1, 2, 3.

 T2 result set includes 2, 3, 4.

The intersect of T1 and T2 result returns 2 and 3. Because these

are distinct values that are output by both queries.

89

The following picture illustrates the intersection of T1 and T2:

The illustration showed that the INTERSECT returns the

intersection of two circles (or sets).

Oracle INTERSECT example

See the following contacts and employees tables in the sample

database.

90

The following statement uses the INTERSECT operator to get the

last names used by people in both contacts and employees tables:

SQL>SELECT
 last_name

 FROM

 contacts
 INTERSECT

 SELECT

 last_name
 FROM

 employees

 ORDER BY
 last_name;

Note that we placed the ORDER BY clause at the last queries to

sort the result set returned by the INTERSECT operator.

Oracle MINUS

The Oracle MINUS operator compares two queries and returns

distinct rows from the first query that are not output by the

91

second query. In other words, the MINUS operator subtracts one

result set from another.

The following illustrates the syntax of the Oracle MINUS

operator:

SQL>SELECT
 column_list_1

 FROM

 T1
 MINUS

 SELECT

 column_list_2
 FROM

 T2;

Similar to the union and intersect operators, the queries above

must conform with the following rules:

 The number of columns and their orders must match.

 The datatype of the corresponding columns must be in the same

data type group such as numeric or character.

Suppose the first query returns the T1 result set that includes 1, 2

and 3. And the second query returns the T2 result set that

includes 2, 3 and 4.

The following picture illustrates the result of the MINUS of T1

and T2:

92

Oracle MINUS examples

See the following contacts and employees tables in the sample

database:

The following statement returns distinct last names from the

query to the left of the MINUS operator which are not also found

in the right query.

SQL>SELECT
 last_name

 FROM
 contacts

 MINUS

 SELECT
 last_name

 FROM

 employees
ORDER BY

 last_name;

Here are the last names returned by the first query but are not

found in the result set of the second query:

93

See the following products and inventories tables:

The following statement returns a list of product id from the

products table, but do not exist in the inventories table:

SQL>SELECT
 product_id

 FROM

 products
 MINUS

 SELECT

 product_id
 FROM

 inventories;

Here is the result:

94

95

STUDENTS’ LABORATORY ACTIVITY

1. Display the name job, salary for all employees whose job is

Clerk or Analyst their salary is not equal to Rs.1000, Rs.3000,

Rs.5000.
2. Create a unique listing of all jobs that are in department 30.

3. Write a query to display the name, department number and

department name for all employees.
4. Write a query to display the employee name, department

name, and location of all employee who earn a commission.

5. Write a query to display the name, job, department number and
department name for all employees who works in DALLAS.

6. Write a query to display the number of people with the same

job. Save the query @ run it.
7. Create a query to display the employee name and hire date for

all employees in same department.

8. Display the employee name and salary of all employees who
report to KING.

96

Integrity Constraints , TCL and DCL

TYPES OF INTEGRITY CONSTRAINTS:

1. Check constraint.

2. Entity Integrity Constraint.

3. Referential integrity constraint

1. Check Constraint:The value that each attribute or data item

can be assigned is expressed in the form of data type, a range

of values or a value from a specified set called as Check

constraint. Example: In the relation EMPLOYEE the domain

of the attribute Salary may be in the range of 12000 to

300000 or Mark secured by a student in STUDENT relation

must be less than or equal to the Total mark.

Creating Check constraint syntax

SQL>CREATE TABLE table_name (

 ...
 column_name data_type CHECK (expression),

 ...

);

In this syntax, a check constraint consists of the keyword

CHECK followed by an expression in parentheses. The

expression should always involve the column thus

constrained. Otherwise, the check constraint does not make

any sense.

If we want to assign the check constraint an explicit name,

we use the CONSTRAINT clause below:

CONSTRAINT check_constraint_name

CHECK (expression);

97

Add Check constraint to a table

To add a check constraint to an existing table, we use the

alter table add constraint statement as follows:
SQL>ALTER TABLE table_name ADD CONSTRAINT

check_constraint_name CHECK(expression);

To drop a check constraint, we use the ALTER TABLE

DROP CONSTRAINT statement as follows:

SQL> ALTER TABLE table_name DROP CONSTRAINT
check_constraint_name;

2. Entity Integrity Constraint:The domain values for any

attribute that forms a primary key of a relation are validated

against the domain constraint, called Entity Integrity Constraint.

 It does not to allow null values and redundant values

against a primary key.

 Adding a primary key to a table in ORACLE:

To add a primary key constraint to an existing table:
SQL>ALTER TABLE table_name ADD CONSTRAINT

constraint_name PRIMARY KEY (column1, column2, ...);

Example: SQL>ALTER TABLE vendors ADD CONSTRAINT
pk_vendors PRIMARY KEY (vendor_id);

Dropping an Oracle PRIMARY KEY constraint

To drop a PRIMARY KEY constraint from a table:

SQL>ALTER TABLE table_name DROP CONSTRAINT

primary_key_constraint_name;

To drop the primary key constraint of the vendors table as

follows:

SQL>ALTER TABLE vendors DROP CONSTRAINT
pk_vendors;

98

3.Referential integrity constraint:

 The constraint that the relation R2 must not contain any

unmatched foreign key values and it must contain foreign key

values matching to the corresponding(Having the same Domain)

primary key of another relation R1 to which it refers to, is called

as Referentital Integrity Constraint.

 Two constraints while an attempt to update the relations are

made:

 (a) We can not delete the records from relation R1 having the

matching foreign key values in the relation R2.

 (b) We can not insert records into the relation R2 which is not

having a corresponding primary key in the Relation R1.

 For Ex: In the two relations Shipment(SID,PID,QTY) and

Supplier(SID, City,Status), the domain of the SID in Supplier

and SID in Shipment are same and SID in Shipment is the

foreign key referencing to the SID in Supplier .

 Syntax in ORACLE:

SQL>CREATE TABLE child_table (

 ...
 CONSTRAINT fk_name

 FOREIGN KEY(col1, col2,...) REFERENCES

parent_table(col1,col2));

First, to explicitly assign the foreign key constraint a name, we

use the CONSTRAINT clause followed by the name. The

CONSTRAINT clause is optional. If we omit it, Oracle will

assign a system-generated name to the foreign key constraint.

99

Second, we specify the FOREIGN KEY clause to define one or

more column as a foreign key and parent table with columns to

which the foreign key columns reference.

Unlike the primary key constraint, a table may have more than

one foreign key constraint.

Transaction Control Language(TCL)

A transaction is a logical unit of work. A transaction begins with

an executable SQL statement and ends explicitly with either

rollback or commit statements.

Commit : This command is used to successfully end a

transaction. It erases all savepoints in the transaction thus

releasing all the locks.

Syntax

SQL>commit;

Rollback: This command is used to undo the work done in the

current transaction.

Syntax

SQL>rollback;

Data Control Language(DCL)

It provides users with privilege commands. The owner of the

database object can allow other database users access to the

database .

100

Grant Privilege command

Syntax

SQL>grant privileges on objectname to username;

Example

SQL>grant select,update on persons to manager;

After successful execution of the above command “grant

succeeded” will be displayed and it grants privileges like select

and update on persons to manager.

Revoke Privilege command

Syntax

SQL>revoke privileges on objectname from username;

Example

SQL>revoke select,update on persons from manager;

After successful execution of the above command “revoke

succeeded” will be displayed and it revokes all the privileges

like select and update on persons from manager.

101

STUDENTS’ LABORATORY ACTIVITY

1. Create a student database table using create command using

Regd. No as Primary Key , insert data of your class.

2. Create a supplier database table using sid as Primary Key.

Insert 5 records.

3. Create a part database table using pid as Primary Key . Insert

5 records.

4. Create a shipment database table using combination of sid

and pid as Primary Key, sid as a foreign key referencing to

the sid in supplier table and pid as a foreign key referencing

to the pid in part table . Insert 5 records.

5. Practice of all Data Retrieval, DML, DDL, TCL and DCL

commands used in Oracle by writing queries.

	GETTING STARTED WITH ORACLE
	What is a database?
	Oracle Database features
	Character data types
	Number data type
	Date data types : They are used to store date and time in a table. Default date data type is “dd-mon-yy”. To view system’s date and time we can use the SQL function called sysdate(). Oracle uses its own format to store date in a fixed length of 7 byte...
	RAW and LONG RAW data types
	BFILE Datatype
	BLOB Datatype
	CLOB Datatype
	NCLOB Datatype
	Oracle CREATE TABLE statement example
	Oracle ALTER TABLE examples
	Oracle ALTER TABLE ADD column examples
	Oracle ALTER TABLE MODIFY column examples
	Oracle ALTER TABLE DROP COLUMN example

	Oracle DROP TABLE examples
	Oracle SELECT examples
	A) query data from a single column
	B)Querying data from multiple columns
	C)Querying data from all columns of a table

	Oracle ORDER BY clause examples
	A) Sorting rows by a column example
	B) Sorting rows by multiple columns example

	Oracle SELECT DISTINCT examples
	A) Oracle SELECT DISTINCT one column example
	B) Oracle SELECT DISTINCT multiple columns example

	Oracle WHERE examples
	A) Selecting rows by using a simple equality operator
	B) Select rows using comparison operator
	C) Select rows that meet some conditions
	D) Selecting rows that have a value between two values
	E) Selecting rows that are in a list of values
	F) Selecting rows which contain value as a part of a string
	Using Oracle column alias to make column heading more meaningful.

	Oracle AND operator examples
	A) Oracle AND to combine two Boolean expressions example
	B) Oracle AND to combine more than two Boolean expressions example
	 C) Oracle AND to combine with OR operator example

	Oracle OR operator examples
	A)using Oracle OR operator to combine two Boolean expressions example
	B) Using Oracle OR operator to combine more than two Boolean expressions example
	C) Using Oracle OR operator to combine with AND operator example
	Oracle NOT IN example
	Oracle IN subquery example
	Oracle NOT IN subquery example
	E) Oracle IN vs. OR
	1) expression
	2) pattern

	Oracle LIKE examples
	A) % wildcard character examples
	B) _ wildcard character examples
	C) Mixed wildcard characters example

	Setting up sample tables
	Oracle inner join
	Oracle left join
	Oracle right join
	Oracle full outer join
	Oracle Self Join example
	A) Using Oracle self join to query hierarchical data example
	B) Using Oracle self join to compare rows within the same table example

	Oracle GROUP BY examples
	A) Oracle GROUP BY basic example
	B) Oracle GROUP BY with an aggregate function example
	C) Oracle GROUP BY with WHERE clause example

	Oracle HAVING clause example
	Simple Oracle HAVING example

	Oracle UNION illustration
	Oracle UNION examples
	Oracle UNION example
	Oracle UNION ALL example

	Oracle UNION vs. JOIN
	Oracle INTERSECT illustration
	Oracle INTERSECT example
	Oracle MINUS examples
	Creating Check constraint syntax
	Add Check constraint to a table
	Adding a primary key to a table in ORACLE:
	Dropping an Oracle PRIMARY KEY constraint

