Laboratory Manual

ON

DATA BASE MANAGEMENT SYSTEM LAB
(For 4th Semester CSE/IT)

Prepared by:

Sri Ramesh Chandra Sahoo Smt Reetanjali Panda
Senior Lecturer (CSE&IT) Lecturer(CSE&IT)
UCP Engineering School UCP Engineering School
Berhampur.

Berhampur.




GETTING STARTED WITH ORACLE

What is a database?

A database is an organized collection of structured data stored
electronically in a computer system. In the 1970s, Dr. E.F.Codd, a
computer scientist, invented the relational model for database
management. The relational model deals with many issues caused by
the flat file model. According to his model, data is organized in
entities and attributes, instead of combining everything in a single
structure. By the way, we often refer the entities as tables, records as
rows and fields as columns.

The relational model is better than the flat file model because it
removes the duplicate data e.g. if you put employee and contact
information on the same file. The employee, who has more than one
contact, will appear in multiple rows.

The Relational Database Management System, or RDBMS in short,
manages relational data. Oracle Database is an RDBMS with the
largest market share.

i
ORACLE
‘@

Oracle Database features

Oracle Database allows you to quickly and safely store and retrieve
data. Here are the integration benefits of the Oracle Database:

. Oracle Database is cross-platform. It can run on various
hardware across operating systems including Windows Server,
Unix, and various distributions of GNU/Linux.




Oracle Database has its networking stack that allows application

from a different platform to communicate with the Oracle
Database smoothly. For example, applications running on
Windows can connect to the Oracle Database running on Unix.

ACID-compliant — Oracle is ACID-compliant Database that
helps maintain data integrity and reliability.

Commitment to open technologies — Oracle is one of the first
Database that supported GNU/Linux in the late 1990s before
GNU/Linux become a commerce product. It has been supporting
this open platform since then.

Oracle Database has several structural features that make it popular:

Logical data structure — Oracle uses the logical data structure to
store data so that you can interact with the database without
knowing where the data is stored physically.

Partitioning — is a high-performance feature that allows you to
divide a large table into different pieces and store each piece
across storage devices.

Memory caching — the memory caching architecture allows you
to scale up a very large database that still can perform at a high
speed.

Data Dictionary is a set of internal tables and views that support
administer Oracle Database more effectively.

Backup and recovery — ensure the integrity of the data in case of
system failure. Oracle includes a powerful tool called Recovery
Manager (RMAN) - allows DBA to perform cold, hot, and
incremental database backups and point-in-time recoveries.

Clustering — Oracle Real Application Clusters (RAC) — Oracle

enables high availability that enables the system is up and
running without interruption of services in case one or more
server in a cluster fails.




Oracle Data Types

In Oracle, every value has a data type which defines a set of
characteristics for the value. These characteristics cause Oracle to
treat values of one data type differently from values of another. For
example, you can add values of the NUMBER data type, but not
values of the RAW data type.

When you create a new table, you specify a data type for each of its
columns. Similarly, when you create a new procedure, you specify a
data type for each of its arguments. The data type defines the allowed
values that each column or argument can store. For example, a DATE
column cannot store a value of February 30, because this is not a valid
date.

Oracle has a number of built-in data types illustrated in the following
table:

Code Data Type

1 VARCHARZ2(size [BYTE | CHAR])
1 NVARCHAR2(size)

2 NUMBER[(precision [, scale]])

8 LONG

12 DATE

21 BINARY_FLOAT

22 BINARY_DOUBLE

23 RAW(size)

24 LONG RAW

69 ROWID



https://www.oracletutorial.com/oracle-basics/oracle-number-data-type/
https://www.oracletutorial.com/oracle-basics/oracle-date/
https://www.oracletutorial.com/oracle-basics/oracle-number-data-type/

Code  Data Type

96 CHAR [(size [BYTE | CHAR])]
96 NCHAR[(size)]

112 CLOB

112 NCLOB

113  BLOB

114  BFILE

Each data type has a code managed internally by Oracle. To find the

data type code of a value in a column, you use the DUMP() function.
Character data types

Character data types consist of CHAR, NCHAR, VARCHARZ2,
NVARCHAR2, and VARCHAR

The NCHAR and NVARCHAR?2 data types are for storing Unicode
character strings.

The fixed-length character data types are CHAR, NCHAR and the
variable-length  character data types are VARCHARZ2,
NVARCHAR?2.

VARCHAR is the synonym of VARCHAR2. However, you should
not use VARCHAR because Oracle may change its semantics in the
future.

For character data types, you can specify their sizes either in bytes or
characters.



https://www.oracletutorial.com/oracle-basics/oracle-char/
https://www.oracletutorial.com/oracle-basics/oracle-varchar2/

Number data type

The NUMBER data type has precision p and scale s. The precision
ranges from 1 to 38 while the scale range from -84 to 127.

If you don’t specify the precision, the column can store values
including fixed-point and floating-point numbers. The default value
for the scale is zero.

Date data types : They are used to store date and time in a table.
Default date data type 1s “dd-mon-yy”. To view system’s date and
time we can use the SQL function called sysdate(). Oracle uses its
own format to store date in a fixed length of 7 bytes each for
century,month,day,year,hour,minute and second.

RAW and LONG RAW data types

The RAW and LONG RAW data types are for storing binary data or
byte strings e.g., the content of documents, sound files, and video
files.

The RAW data type can store up to 2000 bytes while the LONG
RAW data type can store up to 2GB.

BFILE Datatype

BFILE data type stores a locator to a large binary file which locates
outside the database. The locator consists of the directory and file
names.

BLOB Datatype

BLOB stands for binary large object. You use the BLOB data type to
store binary objects with the maximum size of (4 gigabytes — 1) *
(database block size).



https://www.oracletutorial.com/oracle-basics/oracle-number-data-type/

CLOB Datatype

CLOB stands for character large object. You use CLOB to store
single-byte or multibyte characters with the maximum size is (4
gigabytes — 1) * (database block size).

Note that CLOB supports both fixed-with and variable-with character
sets.

NCLOB Datatype

NCLOB is similar to CLOB except that it can store the Unicode
characters.

Data Definition Lanquaqge:

The Data Definition Language is used to create an object(table),alter
the structure of an object and drop the object created.

1. Oracle CREATE TABLE

To create a new table in Oracle Database, we can use the CREATE
TABLE statement. The following illustrates the basic syntax of the
CREATE TABLE statement:

SQL>CREATE TABLE table_name (
column_1 data_type column_constraint,
column_2 data_type column_constraint,

table constraint

);

In this syntax:

. First, specify the table name on the CREATE TABLE clause.




. Second, list all columns of the table within the parentheses. In
case a table has multiple columns, we need to separate them by
commas (,). A column definition includes the column name
followed by its data type e.g., NUMBER, VARCHAR?2, and a
column constraint such as NOT NULL, primary key, check.

. Third, add table constraints if applicable e.g., primary key,
foreign key, check.

Oracle CREATE TABLE statement example

The following example shows how to create a new table named
persons.

SQL>CREATE TABLE persons(
person_id NUMBER, first name VARCHAR2(50) NOT NULL,
last_ name VARCHAR2(50) NOT NULL,
PRIMARY KEY (person_id));

In this example, the persons table has three columns: person _id,
first_name, and last_name.The data type of the person_id column is
NUMBER. The first_ name column has data type VARCHAR2 with
the maximum length is 50. It means that we cannot insert a first name
whose length is greater than 50 into the first_ name column. Besides,
the NOT NULL column constraint prevents the first_name column to
have NULL values.The last name column has the same
characteristics as the first_ name column.The PRIMARY KEY clause
specifies the person_id column as the primary key column which is
used for identifying the unique row in the persons table.

2.0racle ALTER TABLE

To modify the structure of an existing table, we use the ALTER

TABLE statement. The following illustrates the syntax:
SQL>ALTER TABLE table name action;

In this statement:;



https://www.oracletutorial.com/oracle-basics/oracle-data-types/
https://www.oracletutorial.com/oracle-basics/oracle-number-data-type/
https://www.oracletutorial.com/oracle-basics/oracle-varchar2/
https://www.oracletutorial.com/oracle-basics/oracle-not-null/
https://www.oracletutorial.com/oracle-basics/oracle-primary-key/
https://www.oracletutorial.com/oracle-basics/oracle-check-constraint/
https://www.oracletutorial.com/oracle-basics/oracle-primary-key/
https://www.oracletutorial.com/oracle-basics/oracle-foreign-key/
https://www.oracletutorial.com/oracle-basics/oracle-check-constraint/
https://www.oracletutorial.com/oracle-basics/oracle-not-null/
https://www.oracletutorial.com/oracle-basics/oracle-primary-key/

. First, specify the table name which we want to modify.

. Second, indicate the action that you want to perform after the
table name.

The ALTER TABLE statement allows you to:

. Add one or more columns
. Modify column definition

. Drop one or more columns

Let’s see some examples to understand how each action works.

Oracle ALTER TABLE examples
Oracle ALTER TABLE ADD column examples

To add a new column to a table, we use the following syntax:

SQL>ALTER TABLE table name

ADD column_name type constraint;

For example, the following statement adds a new column named
birthdate to the persons table:

ALTER TABLE persons

ADD birthdate DATE NOT NULL;

If you view the persons table, you will see that the birthdate column is

appended at the end of the column list:
DESC persons;

PERSON_ID NOT NULL NUMBER
FIRST_NAME NOT NULL VARCHAR2(50)
LAST_NAME NOT NULL VARCHAR2(50)
BIRTHDATE NOT NULL DATE




To add multiple columns to a table at the same time, you place the
new columns inside the parenthesis as follows:

SQL>ALTER TABLE table name
ADD (
column_name type constraint,
column_name type constraint,

'

SQL>ALTER TABLE persons
ADD (
phone VARCHAR(20),
email VARCHAR(100)
I
In this example, the statement added two new columns named phone
and email to the persons table.

SQL>DESC persons

PERSON_ID NOT NULL NUMBER
FIRST_NAME NOT NULL VARCHAR2(50)
LAST NAME NOT NULL VARCHAR2(50)
BIRTHDATE NOT NULL DATE

PHONE VARCHAR2(20)

EMAIL VARCHAR2(100)

Oracle ALTER TABLE MODIFY column examples

To modify the attributes of a column, we use the following syntax:

SQL>ALTER TABLE table name MODIFY column_name type
constraint;

10




For example, the following statement changes the birthdate column to
a null-able column:

SQL>ALTER TABLE persons MODIFY birthdate DATE NULL,;
Let’s verify the persons table structure again:

SQL>DESC persons

Name Null  Type

PERSON_ID NOT NULL NUMBER

FIRST NAME NOT NULL VARCHAR2(50)
LAST _NAME NOT NULL VARCHAR2(50)

BIRTHDATE DATE
PHONE VARCHARZ2(20)
EMAIL VARCHAR2(100)

We can see, the birthdate became null-able.
To modify multiple columns, you use the following syntax:

SQL>ALTER TABLE table name MODIFY ( column_1 type
constraint, column_2 type constraint, ...);

For example, the following statement changes the phone and email
column to NOT NULL columns and extends the length of the email
column to 255 characters:

SQL> ALTER TABLE persons MODIFY( phone VARCHAR2(20)
NOT NULL,email VARCHAR2(255) NOT NULL);

Let us verify the persons table structure again:
SQL>DESC persons;

PERSON_ID NOT NULL NUMBER
FIRST_NAME NOT NULL VARCHAR2(50)
LAST_NAME NOT NULL VARCHAR2(50)
BIRTHDATE DATE

PHONE NOT NULL VARCHARZ2(20)
EMAIL NOT NULL VARCHAR2(255)

11




Oracle ALTER TABLE DROP COLUMN example

To remove an existing column from a table, we use the following
syntax:

SQL>ALTER TABLE table name DROP COLUMN column_name;

This statement deletes the column from the table structure and also
the data stored in that column.

The following example removes the birthdate column from the
persons table:

SQL> ALTER TABLE persons DROP COLUMN birthdate;

Viewing the persons table structure again, we will find that the
birthdate column has been removed:

SQL> DESC persons;

PERSON_ID NOT NULL NUMBER
FIRST_NAME NOT NULL VARCHAR2(50)
LAST_NAME NOT NULL VARCHAR2(50)
PHONE NOT NULL VARCHARZ2(20)
EMAIL NOT NULL VARCHAR2(255)

To drop multiple columns at the same time, you use the syntax below:

SQL>ALTER TABLE table_name DROP (column_1,column_2,...);

For example, the following statement removes the phone and email
columns from the persons table:

12




SQL>ALTER TABLE persons DROP( email, phone );

Let’s check the persons table again:
SQL>DESC persons;

PERSON_ID NOT NULL NUMBER
FIRST_NAME NOT NULL VARCHAR2(50)
LAST_NAME NOT NULL VARCHARZ2(50)

3.0racle DROP TABLE

To move a table to the recycle bin or remove it entirely from the
database, we use the DROP TABLE statement:

SQL>DROP TABLE table_name;
In this statement:

Oracle DROP TABLE examples

The following CREATE TABLE statement creates persons table for
the demonstration:

SQL>CREATE TABLE persons (
person_id NUMBER,
first_ name VARCHAR2(50) NOT NULL,
last_ name VARCHAR2(50) NOT NULL,
PRIMARY KEY (person_id)

);

The following example drops the persons table from the database:

SQL>DROP TABLE persons;

13



https://www.oracletutorial.com/oracle-basics/oracle-create-table/

4.0racle TRUNCATE TABLE:

Oracle introduced the TRUNCATE TABLE statement that allows us
to delete all rows from a big table.

The following illustrates the syntax of the Oracle TRUNCATE

TABLE statement:
SQL>TRUNCATE TABLE table name;

By default, to remove all rows from a table, we specify the name of
the table that we want to truncate in the TRUNCATE TABLE clause:
Example:

SQL>TRUNCATE TABLE persons;

5.0racle RENAME Table

To rename a table, we use the following Oracle RENAME table
statement as follows:

SQL>RENAME table_name TO new_name;
In the RENAME table statement:

First, specify the name of the existing table which we want to
rename.

Second, specify the new table name. The new name must not be
the same as another table in the same schema.

Note that we cannot roll back a RENAME statement once we
executed it.

When we rename a table, Oracle automatically transfers indexes,
constraints, and grants on the old table to the new one. In addition, it
invalidates all objects that depend on the renamed table such as views,
stored procedures, function, and synonyms.

14




Data Manipulation Lanquage(DML)

These are used to query and manipulate existing objects like tables.

INSERT INTO/VALUES

This command is used for inserting values into the rows of a
table (relation).

Syntax: SQL>INSERT INTO table (columnl [, column2,
column3 ... ]) VALUES (valuel [, value2, value3 ... ]);

For example:

SQL>INSERT INTO wucpes (Author, Subject) VALUES

("anonymous", "computers");
UPDATE/SET/WHERE

This command is used for updating or modifying the values of
columns in a table (relation).

Syntax:

SQL>UPDATE table name SET column_name = value [,
column_name = value ...] [WHERE condition];

For example:

SQL>UPDATE ucpes SET Author="webmaster" WHERE
Author="anonymous";

DELETE/FROM/WHERE

This command is used for removing one or more rows from a
table (relation).

Syntax:
SQL>DELETE FROM table_name [WHERE condition];
SQL>DELETE FROM ucpes WHERE Author="unknown";

15




SELECT/FROM/WHERE

In Oracle, tables are consists of columns and rows. For example,
the customers table in the sample database has the following
columns: customer_id, name, address, website and credit_limit.
The customers table also has data in these columns.

CUSTOMERS

*CUSTOMER_ID
NAME
ADDRESS
WEBSITE
CREDIT_LIMIT

To retrieve data from one or more columns of a table, we use the
SELECT statement with the following syntax:

SQL>SELECT
column_1,
column_2,

FROM
table _name;
In this SELECT statement:

. First, specify the table name from which we want to query
the data.

. Second, indicate the columns from which we want to
return the data. If we have more than one column, we need to
separate each by a comma (,).

Oracle SELECT examples

Let’s take some examples of using the Oracle SELECT
statement to understand how it works.

16



https://www.oracletutorial.com/getting-started/oracle-sample-database/

A) query data from a single column

To get the customer names from the customers table, we use the
following statement:

SQL>SELECT
name

FROM

customers;

The following picture illustrates the result:

MAME
Kimberly-Clark
Hartford Financial Services Group
Kraft Heinz
Fluor
AECOM
Jabil Circuit
CenturyLink
General Mills
Southern

Thermo Fisher Scientific

B)Querying data from multiple columns

To query data from multiple columns, we specify a list of
comma-separated column names.

The following example shows how to query data from the
customer_id, name, and credit_limit columns of the customer
table.

SQL>SELECT
customer _id,
name,
credit_limit
FROM
customers;

17




The following shows the result:

CUSTOMER_ID |{: NAME |} CREDIT_LIMIT
33 Kimberly-Clark 400
36 Hartford Financial Services Group 400
38 Kraft Heinz 500
40 Fluor 500
41 AECOM 500
44 Jabil Circuit 500
45 CenturyLink 500
47 General Mills 600
48 Southern 600
50 Thermo Fisher Scientific 700

C)Querying data from all columns of a table

The following example retrieves all rows from all columns of
the customers table:

SQL>SELECT
customer _id,
name,
address,
website,
credit_limit
FROM
customers;

Here is the result;

CUSTOMER_ID |{} NAME |{} ADDRESS |§} wEBSITE CREDIT_LIMIT |
1 Raytheon 514 W Superior St, Kokomo, IN http://www.raytheon.com 100
2 Plains GF Holdings 2515 Bloyd Ave, Indianapolis, IN http://wnww.plainsallamerican.com 100
3 US Foods Holding 8768 N State Rd 37, Bloomington, IN http://www.usfoods.com 100
4 AbbVie 6445 Bay Harbor Ln, Indianapolis, IN http://wnww.abbvie.com 100
5 Centene 4019 W 3Rd St, Bloomington, IN http://www.centene.com 100
6 Community Health Systems 1608 Portage Ave, South Bend, IN http://waww.chs.net 100
7 Alcoa 23943 Us Highway 33, Elkhart, TN http://woww.alcoa.com 100
8 International Paper 136 E Market St # 800, Indianapolis, IN http://www.internationalpaper.com 100
9 Emerson Electric 1905 College St, South Bend, IN http://www.emerson.com 100

10 Union Pacific 3512 Rockville Rd # 137C, Indianapolis, IN  http://www.up.com 200

To make it handy, we can use the shorthand asterisk (*) to
instruct Oracle to return data from all columns of a table as
follows:

18




SQL>SELECT * FROM customers;

Oracle Dual Table

In Oracle, the SELECT statement must have a FROM clause.
However, some queries don’t require any table for example:

SQL>SELECT
UPPER('This is a string’)
FROM
what_table

In this case, we might think about creating a table and use it in
the FROM clause for just using the upper() function.

Fortunately, Oracle provides the DUAL table which is a special
table that belongs to the schema of the user SYS but is
accessible to all users. The DUAL table has one column named
DUMMY whose data type is varchar2() and contains one row
with a value X.

SQL>SELECT * FROM dual,

DLIMMY

X

By using the DUAL table, we can call the upper() function as
follows:

SQL>SELECT

UPPER('This is a string’)

FROM

Dual;
Besides calling built-in function, we can use expressions in the
SELECT clause of a query that accesses the DUAL table:

19



https://www.oracletutorial.com/oracle-basics/oracle-select/
https://www.oracletutorial.com/plsql-tutorial/plsql-data-types/

SQL>SELECT
(10+ 5)/2
FROM
dual;

The DUAL table is most simple one because it was designed for
fast access.

Oracle ORDER BY Clause

In Oracle, a table stores its rows in unspecified order regardless
of the order which rows were inserted into the database. To
query rows in either ascending or descending order by a column,
we must explicitly instruct Oracle Database that we want to do
SO.

For example, we may want to list all customers by their names
alphabetically or display all customers in order of lowest to
highest credit limits.

To sort data, we add the ORDER BY clause to the SELECT
statement as follows:
SQL>SELECT

column_1,

column_2,

column_3,

FROM

table_name

ORDER BY

column_1 [ASC | DESC] [NULLS FIRST | NULLS LAST],
column_1 [ASC | DESC] [NULLS FIRST | NULLS LAST],

To sort the result set by a column, we list that column after the
ORDER BY clause.
Following the column name is a sort order that can be:

20



https://www.oracletutorial.com/oracle-basics/oracle-select/
https://www.oracletutorial.com/oracle-basics/oracle-select/

) ASC for sorting in ascending order

) DESC for sorting in descending order

By default, the ORDER BY clause sorts rows in ascending order
whether we specify ASC or not. If we want to sort rows in
descending order, you use DESC explicitly. The ORDER BY
clause allows us to sort data by multiple columns where each
column may have different sort orders. The ORDER BY clause
Is always the last clause in a SELECT statement.

Oracle ORDER BY clause examples

We will use the customers table in the sample database for
demonstration.
CUSTOMERS
*CUSTOMER_ID
MAME
ADDRESS
WEBSITE
CREDIT_LINMIT

The following statement retrieves customer name, address, and
credit limit from the customers table:

SQL>SELECT
name,
address,
credit_limit
FROM
customers;

NAME |{; ADDRESS |4t CREDIT_LIMIT
Kimberly-Clark 1660 University Ter, Ann Arbor, MI 400
Hartford Financial Services Group 13713 N East St, Lansing, MI 400
Kraft Heinz 10315 Hickman Rd, Des Moines, IA 500
Fluor 1928 Sherwood Dr, Council Bluffs, IA 500
AECOM 2102 E Kimberly Rd, Davenport, IA 500
labil Circuit 221 3Rd Ave Se # 300, Cedar Rapids, IA 500
CenturyLink 2120 Heights Dr, Eau Claire, WI 500
General Mills 6353 W Good Hope Rd, Milwaukee, WI 600
Southern 1314 N Stoughton Rd, Madison, WI 600

21



https://www.oracletutorial.com/getting-started/oracle-sample-database/

A) Sorting rows by a column example

To sort the customer data by names alphabetically in ascending
order, we use the following statement:

SQL>SELECT
name,
address,
credit_limit
FROM
customers
ORDER BY
name ASC;

MAME ADDRESS CREDIT_LIMIT
M Via Frenzy 6903, Roma, 1200
ADF Langstr 14, Zuerich, ZH 700
AECOM 2102 E Kimberly Rd, Davenport, IA 500
AES 33 Fulton 5t, Poughkeepsie, NY 1200
AlG 12817 Coastal Hwy, Ocean City, MD 2400
ATET 55 Church Hill Rd, Reading, PA 1200
Abbvie 6445 Bay Harbor Ln, Indianapolis, IN 100
Abbott Laboratories 3310 Dixie Ct, Saginaw, MI 200
Advance Auto Parts 2674 Collingwood St, Detroit, MI 3700
Aetna 200 E Fort Ave, Baltimore, MD 2400

The ASC instructs Oracle to sort the rows in ascending order.
Because the ASC is optional. If we omit it, by default, the
ORDER BY clause sorts rows by the specified column in
ascending order.

Therefore, the following expression:

ORDER BY name ASC
Is equivalent to the following:

ORDER BY name

22




To sort customer by name alphabetically in descending order,
we explicitly use DESC after the column name in the ORDER

BY clause as follows:
SQL>SELECT
name,
address,
credit_limit
FROM
customers
ORDER BY
name DESC:;

The following picture shows the result that customers sorted by
names alphabetically in descending order:

B) Sorting rows by multiple columns example

To sort multiple columns, you separate each column in the
ORDER BY clause by a comma.

See the following contacts table in the sample database.

CONTACTS

*CONTACT_ID
FIRST_MAME
LAST_MNAME
EMAIL
FHONE
CUSTOMER_ID

For example, to sort contacts by their first names in ascending
order and their last names in descending order, we use the
following statement:

23



https://www.oracletutorial.com/getting-started/oracle-sample-database/

SQL>SELECT
first_name,
last_name
FROM
contacts
ORDER BY
first_name,
last_name DESC;

In this example, Oracle first sorts the rows by first names in
ascending order to make an initial result set. Oracle then sorts

the initial result set by the last name in descending order.

See the following result:

Corliss Mcneil
Cristine Bell
Daina Combs
Daniel Glass
Daniel Costner
Darron Robertson
Debra Herring
Dell Wilkinson
Delpha Golden
Deneen Hays
Denny Daniel
Diane Higgins
Dianne Sen
Dianne Derek
Dick Lamb
Don Hansen
Doretha Tyler
Dorotha Wong

In this result:

First, the first names are sorted in ascending order.

Second, if two first names are the same, the last names are

sorted in descending order e..g, Daniel Glass and Daniel

24




Costner, Dianne Sen and Dianne Derek, Doretha Tyler and
Dorotha Wong.

Oracle SELECT DISTINCT

The DISTINCT clause is used in a SELECT statement to filter
duplicate rows in the result set. It ensures that rows returned are
unique for the column or columns specified in the SELECT
clause.

The following illustrates the syntax of the SELECT DISTINCT
statement:

SQL>SELECT DISTINCT
column_1
FROM
table;

In this statement, the values in the column_1 of the table are
compared to determine the duplicates.

To retrieve unique data based on multiple columns, we need to
specify the column list in the SELECT clause as follows:

SQL>SELECT
DISTINCT column_1,
column_2,

FROM

table _name;

In this syntax, the combination of values in the column_1,
column_2, and column_3 are used to determine the unigueness
of the data.

The DISTINCT clause can be used only in the SELECT
statement.

25



https://www.oracletutorial.com/oracle-basics/oracle-select/

Oracle SELECT DISTINCT examples

Let’s look at some examples of using SELECT DISTINCT to
see how it works.

A) Oracle SELECT DISTINCT one column example

See the contacts table in the sample database:

CONTACTS

*CONTACT_ID
FIRST_MAME
LAST_MNAME
EMAIL
FHOMNE
CUSTOMER_ID

The following example retrieves all contact first names:

SQL>SELECT
first_name
FROM
contacts
ORDER BY
first_name;
The query returned 319 rows, indicating that the contacts table

has 319 rows.

26



https://www.oracletutorial.com/getting-started/oracle-sample-database/

# 5 ) 3 soL | Al Rows Fetched: 313in 0.012 seconds

't FIRST_MAME
1 Aaron
2 Adah
3 Adam
4 Adrienne
5 Agustina
& Al
7 Aleshia
8 Alessandra
9 Alexandra

To get unique contact first names, we add the DISTINCT
keyword to the above SELECT statement as follows:

SQL>SELECT DISTINCT
first_name
FROM
contacts
ORDER BY
first_name;
Now, the result set has 302 rows, meaning that 17 duplicate

rows have been removed.

A L 5 sou I[ATRow
it FIRST_NAME
1 Aaron
2 Adah
3 Adam
4 Adrienne
5 Agustina
& Al
7 Aleshia

B) Oracle SELECT DISTINCT multiple columns example

See the following order_items table:

27




ORDER_ITEMS

*ORDER_ID

*ITEM_ID
FRODUCT_ID
QUANTITY
UNIT_PRICE

The following statement selects distinct product id and quantity
from the order_items table:

SQL>SELECT
DISTINCT product_id,
quantity
FROM
ORDER_ITEMS
ORDER BY
product_id;
The following illustrates the result:

PRODUCT_ID |4} QUANTITY

1 43
1 a7
1 as
1 127
1 135
2 65
2 a9
3 46
3 101
4 82

In this example, both values the product id and quantity
columns are used for evaluating the uniqueness of the rows in
the result set.

Oracle WHERE Clause

The WHERE clause specifies a search condition for rows
returned by the select statement. The following illustrates the
syntax of the WHERE clause:

28




SQL>SELECT
column_1,
column_2,

FROM
table_name
WHERE
search_condition
ORDER BY

column_1,
column_2;

The WHERE clause appears after the FROM clause but before
the order by clause. Following the WHERE keyword is the
search_condition that defines a condition which returned rows
must satisfy.

Besides the SELECT statement, WE can use the WHERE clause
in the DELETE or UPDATE statement to specify which rows to
update or delete.

Oracle WHERE examples

See the following products table in the sample database:

PRODUCTS

*PRODUCT_ID
FRODUCT_MNAME
DESCRIPTION
STANDARD_COST
LIST_PRICE
CATEGORY_ID

29



https://www.oracletutorial.com/oracle-basics/oracle-delete/
https://www.oracletutorial.com/oracle-basics/oracle-update/
https://www.oracletutorial.com/getting-started/oracle-sample-database/

A) Selecting rows by using a simple equality operator

The following example returns only products whose names are
'‘Kingston':

SQL>SELECT
product_name,
description,
list_price,
category id
FROM
products
WHERE
product_name = 'Kingston’;
The following picture illustrates the result:

PRODUCT_NAME |{} DESCRIPTION LIST_PRICE |{} CATEGORY_ID
Kingstan Speed:DDR3-1333,Type:240-pin DIMM, CAS:9Module:4x16GBSize:64GB 671.38 5
Kingstan Speed:DDR3-1600,Type:240-pin DIMM, CAS:11Module:4x8GBSize:32GB 653.5 5
Kingstan Speed:DDR3-1600,Type:240-pin DIMM, CAS:11Module:4x16GBSize: 64GB 644 5
Kingston Speerl:DDR4-2133.Type:288-pin DIMM,CAS:15Module:4x16GBSize:64GE 741.63 5

In this example, Oracle evaluates the clauses in the following
order:FROM WHERE and SELECT

1.  First, the FROM clause specified the table for querying
data.

2. Second, the WHERE clause filtered rows based on the
condition e.g., product_name = 'Kingston").

3. Third, the SELECT clause chose the columns that should
be returned.

B) Select rows using comparison operator

Besides the equality operator, Oracle provides us with many
other comparison operators illustrated in the following table:

30




Operator Description

= Equality

I= <> Inequality

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

IN Equal to any value in a list of values

Compare a value to a list or subquery.

ANY/SOME / ALL It must be preceded by another operator
such as =, >, <,

NOT IN Not equal to any value in a list of
values

[NOT] BETWEEN Equivalent to [Not] >=n and <=Y.

nand m

[NOT] EXISTS IReturn true if subquery returns at
east one row

IS [NOT] NULL NULL test

For example, to get products whose list prices are greater than
500, we use the following statement:

SQL>SELECT
product_name,
list_price
FROM
products

WHERE
list_price > 500;

31



https://www.oracletutorial.com/oracle-basics/oracle-in/
https://www.oracletutorial.com/oracle-basics/oracle-any/
https://www.oracletutorial.com/oracle-basics/oracle-any/
https://www.oracletutorial.com/oracle-basics/oracle-all/
https://www.oracletutorial.com/oracle-basics/oracle-subquery/
https://www.oracletutorial.com/oracle-basics/oracle-in/
https://www.oracletutorial.com/oracle-basics/oracle-between/
https://www.oracletutorial.com/oracle-basics/oracle-not-exists/
https://www.oracletutorial.com/oracle-basics/oracle-exists/

PRODUCT_MAME |{¥ LIST_PRICE

Gigabyte GA-Z270X-Gaming 9 203.98
Asus Rampage V Edition 10 519.99
Supermicro H8DGGE-F 525.99
MSI X99A GODLIKE GAMING CARBON 249.59
Asus Z10PE-DB WS 261.59
Asus RAMPAGE V EXTREME 272.96
Asus ROG MAXIMUS IX EXTREME 573.99
Asus X99-E-10G W5 649
Intel DP3S0DPM 789,79

C) Select rows that meet some conditions

To combine conditions you can use the AND, OR and NOT
logical operators.

For example, to get all motherboards that belong to the category
id 1 and have list prices greater than 500, we use the following
statement:

SQL>SELECT
product_name,
list_price
FROM
products

WHERE
list_price > 500
AND category_id = 4;

The result set includes only motherboards whose list prices are
greater than 500.

32



https://www.oracletutorial.com/oracle-basics/oracle-and/
https://www.oracletutorial.com/oracle-basics/oracle-or/

PRODUCT_NAME |4} LIST_PRICE

Gigabyte GA-Z270X-Gaming 9 503.98
Asus Rampage V Edition 10 519.99
Supermicro H8DGE-F 525.99
MSI X994 GODLIKE GAMING CARBON 540,58
Intel Core i7-3930K 554.99
Asus Z10PE-DB WS 561.58
Intel Xeon E5-1650 V3 564.89
Asus RAMPAGE W EXTREME 572.96
Asus ROG MAXIMUS IX EXTREME 573.89

D) Selecting rows that have a value between two values

To find rows that have a value between two values, we use the
BETWEEN operator in the WHERE clause.

For example, to get the products whose list prices are between
650 and 680, we use the following statement:

SQL>SELECT
product_name,
list_price
FROM
products
WHERE
list_price BETWEEN 650 AND 680
ORDER BY
list_price;

The following picture illustrates the result set:

PRODUCT _MAME | LIST_PRICE
Kingston 853.5
Corsair Dominator Flatinum 655,99
Intel Core i7-3930K &80
Kingston 8671.38
F.5kill Ripjaws WV Series 677.959
Intel Core i7-7820K €£78.75

33




Note that the following expressions are equivalent:

list_price BETWEEN 650 AND 680
list_price >= 650 AND list_price <= 680

E) Selecting rows that are in a list of values

To query rows that are in a list of values, we use the IN operator
as follows:

SQL>SELECT
product_name,
category id
FROM
products

WHERE
category _id IN(1, 4)
ORDER BY
product_name;

The following illustrates the result:

PRODUCT_MAME | CATEGORY_ID
AMD Opteron 6378
ASRock C2750D41
ASRock E3C224D4M-16RE
ASRock EF2C602-4L/D16
ASRock EP2C612 WS
ASRock Fatallty X299 Professional Gaming i9
ASRock X299 Taichi
ASRock X99 Extremell
ASRock 2270 SuperCarrier
Aag KGEPE-N16

The expression:

L

category_id IN (1, 4)
is the same as:

34



https://www.oracletutorial.com/oracle-basics/oracle-in/

category_id = 1 OR category_id = 4
F) Selecting rows which contain value as a part of a string

The following statement retrieves product whose name starts
with Asus:

SQL>SELECT
product_name,
list_price
FROM
products
WHERE
product_name LIKE 'Asus%'
ORDER BY
list_price;

In this example, we used the LIKE operator to match rows based
on the specified pattern.

Oracle Alias

When we query data from a table, Oracle uses the column names
of the table for displaying the column heading. For example, the
following statement returns the first name and last name of
employees:

SQL>SELECT
first_name,
last_name
FROM
employees
ORDER BY
first_name;

35



https://www.oracletutorial.com/oracle-basics/oracle-like/
https://www.oracletutorial.com/oracle-basics/oracle-select/

FIRST_NAME |} LAST_NAME

Agron Fatterson
Abigail Palmer
Albert Watson
Alex Sanders
Alice Wells
Amber Rose
Amelia Myers
Amelie Hudson
Annabelle Dunn
Austin Flores

In this example, first_name and last_ name column names were
quite clear. However, sometimes, the column names are quite
vague for describing the meaning of data such as:

SQL>SELECT
Istprc,
prdnm
FROM
long_table name;

To Dbetter describe the data displayed in the output, we can
substitute a column alias for the column name in the query
results.

For instance, instead of using first name and last name, we
might want to use forename and surname for display names of
employees.

To instruct Oracle to use a column alias, we simply list the
column alias next to the column name in the SELECT clause as
shown below:

SQL>SELECT
first_name AS forename,
last name AS surname

36



https://www.oracletutorial.com/oracle-basics/oracle-select/

FROM
employees;

FOREMNAME | SURMAME
Summer Fayne
Rose Stephens
Annabelle  Dunn

Tommy Bailey

Blake Cooper
Jude Rivera
Tyler Ramirez
Ryan Gray
Elliot Brooks
Ellintt lames

The AS keyword is used to distinguish between the column
name and the column alias. Because the AS keyword is optional,
we can skip it as follows:

SELECT
first_name forename,
last_name surname
FROM
employees;

Using Oracle column alias to make column heading more
meaningful.

By default, Oracle capitalizes the column heading in the query
result. If we want to change the letter case of the column
heading, we need to enclose it in quotation marks (“”).

SQL> SELECT
first_name "Forename",
last_name "Surname”
FROM
employees;

37



https://www.oracletutorial.com/oracle-string-functions/oracle-upper/

Faorename | Surname

Summer Fayne
Rose Stephens
Annabelle  Dunn
Tommy Bailey

Blake Cooper
Jude Rivera
Tyler Ramirez
Ryan Gray
Elliot Brooks

As shown in the output, the forename and surname column
headings retain their letter cases.

38




STUDENTS’ LABORATORY ACTIVITY

. Create the EMP table.

. Show the Structure of EMP table.
. Create the DEPT table.

. Show the Structure of DEPT table.

1

2

3

4

5. Insert 5 rows into the DEPT table.
6. Insert 5 rows into the EMP table.

7. Display all data from EMP table.

8. Display all data from DEPT table.

9. Display unique jobs from the EMP table.

10.Write a query to Name the column headings EMP#,
Employee, Job and Hire date respectively.

11.Create a query to display the Name and salary of
employees earning more than Rs.2850. Save the query and
run it.

12. Display the employee name, job and start date of
employees hire date between Feb.20.1981 and May 1, 1981.
Order the query in ascending order of start date.

13. Display the name and title of all employees who don’t
have a Manager.

14. Display the name, salary and comm. For all employee
who earn comm. Sort data in descending order of salary and
comm.

15. Write a query to display the date. Label the column
DATE.

39




16. Delete the information of student having roll No -15 and
City- Bhubaneswar. Rename the Student database table to
STUDENT INFORMATION.

40




SOL Functions,Set Operators ,Joins and Sub Queries

SQL NUMERIC FUNCTIONS

Function
CEIL(n)

FLOOR(n)

ROUNDI(n,m)

POWER(m,n)

MOD(m,n)

SQRT(n)

ABS(n)

TRUNC
(n1, n2)

Action

Returns nearest whole

Example

select CEIL(12.3) from dual;

number greater than or

equal to n.

Returns nearest whole

select FLOOR(127.6) from dual;

number less than or

equal to n.

Rounds nto m places
to the right of the
decimal point.

Multiplies m to the

power n.

Returns the remainder
of the division of m by
n.lfn=0,then0is

select ROUNDI(579.34886,3)
from dual:

select POWERI(S5,3) from dual:

select MODI(9,5) from dual:
select mod(10,5) from dual;
select mod(6,7) from dual;

returned. If n > m, then

m is returned.

Returns the square root select SQRT(9) from dual;

of n.

Returns the absolute

value of n.

Returns a value with

select ABS(-29) from dual:

select TRUNC(29.16, 1),

the required number of trunc(31.2,-1) from dual;
decimal places while a

negative n2 rounds to

the left of the decimal.

SQL CHARACTER FUNCTIONS

41

Displays
13

579.349

29.1
30



https://www.google.com/url?sa=i&url=https%3A%2F%2Flogicalread.com%2F2015%2F05%2F29%2Foracle-employ-functions-mc05%2F&psig=AOvVaw3u7d-gjJNaJ_PQ3cF-B4wy&ust=1588687444065000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOCB2oiwmukCFQAAAAAdAAAAABAD

Function
LOWER( ¢ far)

REPLACEIchar,
sir) str2)

SUBSTRIchar,
m,n

TRIMIChar)

Action

Converts the entire string

10 lowercase,

Replaces every
occurrence of sirl Iin
char with str2.

Extracts the characters
tram «har starting in
position m lor n
characters

Remones spaces before
and after char.

Example
select LOWERI'DALA')

from dual,

select REPLACEH 'Scott!
'S' 'Bov') from dual:

select
SUBSTRUABCDEF 4.2)
from dual

Select TRIMI' testing
from dual;

LENGTHIchay) Retums the length of
.
RPAD expr I, Pads expr! with expr to

nexprl)

the right for n characters.

from dual:

Often userd for space
packding in the creation
of a fixed-length record

INITCAP1Cha)

UPPEICase,

Changes the first character
of each element in <far o

from dual;

SQL AGGREGATE FUNCTIONS

Function Action

COUNTIeapn Returns a count af
non-mull column
values sor each row

retnevesd

Requrns the averages
for the column vadues
and rows selected

AV evpn

Returns the sum of
the coluerm values for
al the retrieved rows

SUMIexpn)

Returns the mingmum
value for the column
and rows retrieved

MINexrn)

Returrs the maximum
vakue boe the column
and rows refrieved

MAXI expr)

Example

sedect COUNTCust_id) from
customens whese cust_state
province = 'NY!

sedect AVGLamount_sold)
from sales whese prod_id =
1 7;

select SUMamount_sold)
from sales where prod_id =
17

select MIN(prod _list_price)
from proclucts;

sedect MAXI prod_list_price)
from products;

42

stlect RPADC Amanda',
10, 1) from dual:

Displays

o4

9.92712978

170270.13

6,99

1299.99

select LENGTHI Marissa')

select INFTCAP share K.Y

Displays

dalia

Boycont

D

Testing
Y 4

Amandal 111

Shane K.



http://logicalread.com/wp-content/uploads/2014/11/tab3-3.jpg
http://logicalread.com/wp-content/uploads/2014/11/tab3-5.jpg

Oracle AND Operator

The AND operator is a logical operator that combines Boolean
expressions and returns true if both expressions are true. If one of
the expressions is false, the AND operator returns false.

The syntax of the AND operator is as follows:

expression_1 AND expression_2

Typically, AND is used in the WHERE clause of the SELECT,
DELETE, and UPDATE statements to form a condition for
matching data. In addition, we use the AND operator in the
predicate of the JOIN clause to form the join condition.

When we use more than one logical operator in a statement,
Oracle always evaluates the AND operators first. However, we
can use parentheses to change the order of evaluation.

Oracle AND operator examples

See the following orders table in the sample database:

ORDERS

*ORDER_ID
CUSTOMER_ID
STATUS
SALESMAMN_ID
ORDER_DATE

A) Oracle AND to combine two Boolean expressions example

The following example finds orders of the customer 2 with the
pending status:

SQL>SELECT

43



https://www.oracletutorial.com/oracle-basics/oracle-where/
https://www.oracletutorial.com/oracle-basics/oracle-select/
https://www.oracletutorial.com/oracle-basics/oracle-delete/
https://www.oracletutorial.com/oracle-basics/oracle-update/
https://www.oracletutorial.com/oracle-basics/oracle-inner-join/
https://www.oracletutorial.com/getting-started/oracle-sample-database/

order_id,
customer _id,
status,
order_date
FROM
orders
WHERE
status = 'Pending'
AND customer_id =2
ORDER BY
order_date;

In this example, the query returned all orders that satisfy both
expressions:

status = 'Pending'
and

customer_id =2
Here is the result;

ORDER_ID |{} CUSTOMER,_ID | {} STATUS |{} ORDER_DATE
78 2 Pending 14-DEC-15
44 2 Pending 20-FEB-17

B) Oracle AND to combine more than two Boolean
expressions example

we can use multiple AND operators to combine Boolean
expressions.

For example, the following statement retrieves the orders that
meet all the following conditions:

. placed in 2017

. isin charge of the salesman id 60

44




has the shipped status.

SQL>SELECT
order_id,
customer _id,
status,
order_date
FROM
orders
WHERE
status = 'Shipped'
AND salesman_id =60
AND EXTRACT(YEAR FROM order_date) = 2017
ORDER BY

order_date;

ORDER._ID |{} CUSTOMER _ID |4} STATUS |{} ORDER_DATE
77 1Shipped 02-JAN-17
09 49 Shipped 07-JAN-17
104 18 Shipped 01-FEB-17

in this example, we used the EXTRACT() function to get the
YEAR field from the order date and compare it with 2017.

C) Oracle AND to combine with OR operator example

we can combine the AND operator with other logical operators
such as OR and NOT to form a condition.

For example, the following query finds order placed by
customer id 44 and has status canceled or pending.

SQL>SELECT order _id, customer_id, status, salesman_id,
order_date FROM orders WHERE ( status = 'Canceled' OR status
= 'Pending' ) AND customer_id =44 ORDER BY order_date;

ORDER_ID |{} CUSTOMER _ID |{} STATUS |{: SALESMAN_ID | {: ORDER _DATE
10 44 Pending (null) 24-1JAN-17
69 44 Canceled 54 17-MAR-17

45



https://www.oracletutorial.com/oracle-date-functions/oracle-extract/
https://www.oracletutorial.com/oracle-basics/oracle-or/

Oracle OR Operator

The OR operator is a logical operator that combines Boolean
expressions and returns true if one of the expressions is true.

The following illustrates the syntax of the OR operator:

expression_1 AND expression_2

We often use the OR operator in the WHERE clause of the
SELECT, DELETE, and UPDATE statements to form a
condition for filtering data.

If we use multiple logical operators in a statement, Oracle
evaluates the OR operators after the NOT and AND operators.
However, we can change the order of evaluation by using
parentheses.

Oracle OR operator examples

We will use the orders table in the sample database for the
demonstration.

ORDERS

*ORDER_ID
CUSTOMER_ID
STATUS
SALESMAMN_ID
ORDER_DATE

A)using Oracle OR operator to combine two Boolean
expressions example

The following example finds orders whose status is pending or
canceled:

46



https://www.oracletutorial.com/oracle-basics/oracle-where/
https://www.oracletutorial.com/oracle-basics/oracle-select/
https://www.oracletutorial.com/oracle-basics/oracle-delete/
https://www.oracletutorial.com/oracle-basics/oracle-update/
https://www.oracletutorial.com/oracle-basics/oracle-and/
https://www.oracletutorial.com/getting-started/oracle-sample-database/

SQL>SELECT

order _id,
customer _id,
status,
order_date

FROM
orders

WHERE
status = 'Pending’
OR status = 'Canceled'

ORDER BY
order_date DESC,;

In this example, the statement returned all orders that satisfy one
of the following expressions:

status = 'Pending'
status = 'Canceled'

The following picture illustrates the result:

ORDER_ID |{} CUSTOMER _ID |{} STATUS |{} ORDER_DATE

1 4 Pending 13-0CT-17
28 6 Canceled 15-AUG-17
31 46 Canceled 12-AUG-17
21 21 Pending 27-MAY-17

5 5 Canceled 09-APR-17
69 44 Canceled 17-MAR-17
70 45 Canceled 21-FEB-17
44 2 Pending 20-FEB-17
46 58 Pending 20-FEB-17
10 44 Pending 24-]AN-17

B) Using Oracle OR operator to combine more than two
Boolean expressions example

We often use the OR operators to combine more than two
Boolean expressions. For example, the following statement

47




retrieves the orders which are in charge of one of the following
the salesman id 60, 61 or 62:

SQL>SELECT
order _id,
customer _id,
status,
salesman_id,
order_date
FROM
orders
WHERE
salesman_id = 60
OR salesman_id =61
OR salesman_id = 62
ORDER BY
order_date DESC,;

Here is the result;

ORDER_ID |{} CUSTOMER _ID |} STATUS |{} SALESMAN_ID |{} ORDER_DATE

83 & Shipped 61 01-NOV-17
04 1 Shipped 62 27-0CT-17
&0 1 Shipped 62 30-JUN-17
40 55 Shipped 62 11-MAY-17
70 45 Canceled 61 21-FEB-17
46 58 Pending 62 20-FEB-17
104 18 Shipped 60 01-FEB-17
Qg 49 Shipped o0 07-JAN-17
77 1 Shipped o0 02-JAN-17
102 45 Shipped 61 20-DEC-16

Instead of using multiple OR operators, we can use the IN
operator as shown in the following example:

SQL>SELECT

order _id,
customer _id,

48



https://www.oracletutorial.com/oracle-basics/oracle-in/

status,
salesman_id,
order_date
FROM
orders
WHERE
salesman_id IN(
60,
61,
62
)
ORDER BY
order_date DESC,;

This query returns the same result as the one that uses the OR
operator above.

C) Using Oracle OR operator to combine with AND operator
example

We can combine the OR operator with other logical operators
such as AND and NOT to form a condition. For example, the
following query returns the orders that belong to the customer id
44 and have canceled or pending status.

SQL>SELECT

order _id,

customer _id,

status,

salesman_id,

order_date

FROM

orders

WHERE

(
status = 'Canceled'
OR status = 'Pending’

49



https://www.oracletutorial.com/oracle-basics/oracle-and/

)
AND customer _id =44

ORDER BY
order_date;

ORDER_ID |} cUSTOMER_ID |{} STATUS |} SALESMAN_ID |{} ORDER_DATE
10 44 Pending (null) 24-JAN-17
09 44 Canceled 24 17-MAR-17

Oracle NOT IN example

The example shows how to find orders whose statuses are not
Shipped and Canceled:

SQL>SELECT
order _id,
customer _id,
status,
salesman_id
FROM
orders

WHERE
status NOT IN(
‘Shipped,
‘Canceled’
)

ORDER BY

order _id;

The result is:

50




ORDER_ID CLISTOMER_ID| 5TAT|.|5| SALESMAN_ID

1 4 Pending 56
10 44 Pending (null)
1a 16 Pending (null)
21 21 Pending Ly
44 2 Pending 55
46 58 Pending 62
50 62 Pending 55
553 66 Pending 59
69 9 Pending Ly

Oracle IN subquery example

The following example returns the id, first name, and last name
of salesmen who are in charge of orders that were canceled

SQL>SELECT
employee _id,
first_name,
last_name
FROM
employees
WHERE
employee_id IN(
SELECT
DISTINCT salesman_id
FROM
orders
WHERE
status = 'Canceled'
)
ORDER BY
first._ Name;

51




EMPLOYEE_ID |{} FIRST_NAME |{} LAST_NAME

61 Daisy Ortiz

a6 Evie Harrison
64 Florence Freeman
62 Freya Gomez
55 Grace Ellis

60 Isabelle Marshall
54 Lily Fisher
57 Scarlett Gibson

In this example, the subquery executes first and returns a list of
salesman ids:

SQL>SELECT
DISTINCT salesman_id
FROM
orders
WHERE
status = 'Canceled'

SALESMAN_ID

57
(null)
24
33
61
56
o4
62
&0

And these salesman ids are used for the outer query which finds
all employees whose ids are equal to any id in the salesman id list

Oracle NOT IN subquery example

See the following customers and orders tables:

52




ORDERS CUSTOMERS
*ORDER_ID * CUSTOMERL_ID
CUSTOMER_ID MNAME
STATUS =6—tH ADDRESS
SALESMAN_ID WEBSITE
ORDER_DATE CREDIT_LIMIT

The following example uses the NOT IN to find customers who
have not placed any orders:

SQL>SELECT
customer _id,
name
FROM
customers
WHERE
customer_id NOT IN(

SELECT
customer _id

FROM

orders

)
CLISTI:)IMER_ID |4t NAME
35 Kimberly-Clark
36 Hartford Financial Services Group
38 Kraft Heinz
40 Fluor
72 Icahn Enterprises
74 Performance Food Group
76 DISH Network
77 FirstEnergy
80 AES
81 CarMax

E) Oracle IN vs. OR

The following example shows how to get the sales orders of
salesman 60, 61, and 62:

53




SQL>SELECT

customer _id,
status,
salesman_id
FROM
orders
WHERE
salesman_id IN(
60,
61,
62
ORDER BY
customer _id;
CUSTOMER_ID |{} STATUS |{} SALESMAN_ID
1 Shipped 62
1 Shipped 62
1 Shipped 60
3 Shipped 62
4 Shipped 61
5 Pending 60
& Shipped 61
7 Canceled 61
& Canceled 61
16 Shipped 62

It is equivalent to:

SQL>SELECT
customer _id,
status,
salesman_id
FROM
orders
WHERE
salesman_id = 60
OR salesman_id = 61
OR salesman_id = 62
ORDER BY

54




customer _id;
Note that the expression:

salesman_id NOT IN (60,61,62);
has the same effect as:

salesman_id !'= 60
AND salesman_id =61
AND salesman_id = 62;

Oracle LIKE

Sometimes, you want to query data based on a specified pattern.
For example, you may want to find contacts whose last names
start with 'St' or first names end with 'er'. In this case, we use the
Oracle LIKE operator.

The syntax of the Oracle LIKE operator is as follows:

expresion [NOT] LIKE pattern
In this syntax, we have:

1) expression

The expression is a column name or an expression that we want
to test against the pattern.

2) pattern

The pattern is a string to search for in the expression. The pattern
includes the following wildcard characters:

% (percent) matches any string of zero or more character.
_ (underscore) matches any single character.

55



https://www.oracletutorial.com/oracle-basics/oracle-select/

The LIKE operator returns true if the expression matches the
pattern. Otherwise, it returns false.

The NOT operator, if specified, negates the result of the LIKE
operator.

Oracle LIKE examples

Let’s take some examples of using the Oracle LIKE operator to
see how it works.

We will use the contacts table in the sample database for the
demonstration:

CONTACTS

*CONTACT_ID
FIRST_MAME
LAST_MNAME
EMAIL
FHONE
CUSTOMER_ID

A) % wildcard character examples

The following example uses the % wildcard to find the phones of
contacts whose last names start with 'St":

SQL>SELECT

first_name,
last_name,

phone

FROM

contacts

WHERE
last_name LIKE 'St%'

56



https://www.oracletutorial.com/getting-started/oracle-sample-database/

ORDER BY
last_name;

The following picture illustrates the result:

FIRST_NAME |{} LAST_NAME |{} PHONE

Josie Steele +41 69 012 3581
Bill Stein +39 6 012 4501

Birgit Stephenson +1 608 123 4374
Herman Stokes +39 49 012 4777
Violeta Stokes +1 810 123 4212
Gonzalo Stone +1 301 123 4814
Flor Stone +1 317 123 4104

In this example, we used the pattern:

'St%’
The LIKE operator matched any string that starts with 'St' and is
followed by any

number of characters e.g., Stokes, Stein, or Steele, etc.

To find the phone numbers of contacts whose last names end with
the string 'er’, you use the following statement:

SQL>SELECT
first_name,
last_name,
phone
FROM
contacts

WHERE
last_name LIKE '%er’
ORDER BY
last_name;

Here is the result;

57




FIRST_NAME |{} LAST_NAME |{} PHONE

Shamika Bauer +01 11 012 4853
Stephaine Booker +39 55 012 4559
Charlene Booker +41 61 012 3537
Annice Boyer +1 518 123 4618
Shelia Brewer +49 89 012 4129
Annabelle Butler +91 80 012 3737
Michol Carter +91 11 012 4813
Barbie Carter +41 5012 3573

Sharee Carver +1 215123 4738
Agustina Conner +1 612 123 4399
Daniel Costner +1 812 123 4153

The pattern:

Y%er
matches any string that ends with the 'er' string.

To perform a case-insensitive match, we use either LOWER() or
UPPER() function as follows:

UPPER( last_name ) LIKE 'ST%

LOWER(last_name LIKE 'st%'

For example, the following statement finds emails of contacts
whose first names start with CH:

SQL>SELECT
first_name,
last_name,
email
FROM
contacts
WHERE
UPPER( first_name ) LIKE 'CH%";
ORDER BY
first_name;
Here is the result:

58




FIRST_NAME |{} LAST_NAME |{} EMALL

Charlene Booker charlene.booker@republicservices.com
Charlie Sutherland charlie.sutherland@up.com

Charlie Facino charlie.pacino@amgen.com

Charlsie Lindsey charlsie.lindsey@berkshirehathaway.com
Charlsie Carey charlsie.carey@grouplauto.com

Christal Grant christal.grant@gs.com

Christian Caae christian.cage@emerson.com

The following example uses the NOT LIKE operator to find
contacts whose phone numbers do not start with '+1":

SQL>SELECT

first_name, last_name, phone
FROM

contacts
WHERE

phone NOT LIKE '+1%'
ORDER BY

first_name;

The result is:

FIRST_NAME |{} LAST_NAME |{} PHONE

Adah Myers +41 3 012 3553
Adam Jacobs +91 80 012 3699
Adrienne Lang +39 2 012 4771
Aleshia Reese +41 4 012 3563
Alessandra  Estrada +41 56 012 3527
Amber Brady +01 80 012 3837
Annabelle Butler +91 80 012 3737
Annelle Lawrence  +39 10 012 4379
Arlette Thornton +01 80 012 3719

B) _wildcard character examples

The following example finds the phone numbers and emails of
contacts whose first names have the following pattern 'Je_i":

SQL>SELECT

59




first_name,

last_name,

email,

phone

FROM

contacts

WHERE

first_name LIKE 'Je_i'
ORDER BY
first_name;

Here is the result:

FIRST_NAME |{} LAST_NAME |{} EMAIL PHOME
Jeni Levy jeni.levy@centene.com +1 812 123 4129
Jeri Randall jeri.randall@nike.com +49 90 012 4131

The pattern ‘Je_i' matches any string that starts with 'Je', followed
by one character, and then followed by ‘i’ e.g., Jeri or Jeni, but not
Jenni.

C) Mixed wildcard characters example

We can mix the wildcard characters in a pattern. For example, the
following statement finds contacts whose first names start with Je
followed by two characters and then any number of characters. In
other words, it will match any last name that starts with Je and
has at least 3 characters:

SQL>SELECT
first_name,
last_name,
email,
phone
FROM
contacts

60




WHERE
first_name LIKE 'Je_%";

FIRST_NAME |{} LAST_NAME |{} EMAIL |4 PHONE

Jeannie Foole jeannie.poole@aboutmcdonalds.com  +91 80 012 4637
Jeni Levy jeni.levy@centene.com +1 812 1234129
Jeri Randall jeri.randall@nike.com +49 90 012 4131
Jerica Brooks jerica.brooks@northropgrumman.com +91 11 012 4811
Jermaine Cote jermaine.cote@wfscorp.com +49 91 012 4133
Jess Mguyen jess.nguyen@searsholdings.com +39 2 012 4773

Jessika Merritt jessika.merritt@bnymellon.com +1 612 123 4397

Oracle Joins

Oracle join is used to combine columns from two or more tables
based on values of the related columns. The related columns are
typically the primary key column(s) of the first table and foreign
key column(s) of the second table.

Oracle supports inner join, left join, right join, full outer join and
Cross join.

Note that you can join a table to itself to query hierarchical data
using an inner join, left join, or right join. This kind of join is
known as self-join.

Setting up sample tables

We will create two new tables with the same structure for the
demonstration:

SQL>CREATE TABLE palette_a (
id INT PRIMARY KEY,
color VARCHAR?2 (100) NOT NULL

61



https://www.oracletutorial.com/oracle-basics/oracle-primary-key/
https://www.oracletutorial.com/oracle-basics/oracle-foreign-key/
https://www.oracletutorial.com/oracle-basics/oracle-foreign-key/
https://www.oracletutorial.com/oracle-basics/oracle-inner-join/
https://www.oracletutorial.com/oracle-basics/oracle-left-join/
https://www.oracletutorial.com/oracle-basics/oracle-right-join/
https://www.oracletutorial.com/oracle-basics/oracle-full-outer-join/
https://www.oracletutorial.com/oracle-basics/oracle-cross-join/
https://www.oracletutorial.com/oracle-basics/oracle-self-join/
https://www.oracletutorial.com/oracle-basics/oracle-create-table/

);

SQL>CREATE TABLE palette b (
id INT PRIMARY KEY,
color VARCHAR?2 (100) NOT NULL

);

SQL>INSERT INTO palette a (id, color)
VALUES (1, 'Red');

SQL>INSERT INTO palette a (id, color)
VALUES (2, 'Green");

SQL>INSERT INTO palette a (id, color)
VALUES (3, 'Blue');

SQL>INSERT INTO palette a (id, color)
VALUES (4, 'Purple’);

-- insert data for the palette b
SQL>INSERT INTO palette b (id, color)
VALUES (1, 'Green");

SQL>INSERT INTO palette_b (id, color)
VALUES (2, 'Red");

SQL>INSERT INTO palette b (id, color)
VALUES (3, 'Cyan’);

SQL>INSERT INTO palette b (id, color)
VALUES (4, 'Brown’);

The tables have some common colors such as Red and Green.
Let’s call the palette a the left table and palette b the right table:

ﬂ COLOR

1Eed

2 Green
3Blue
4 Purple

62




ﬂ COLOR

1 Green

2Red

3 Cyan

4 Brown

Oracle inner join

The following statement joins the left table to the right table
using the values in the color column:
SQL>SELECT
a.id id_a,
a.color color_a,
b.id id_b,
b.color color_b
FROM
palette aa
INNER JOIN palette_b b ON a.color = b.color;

Here is the output:

ID_A |4} coLor_A |{} ID_B |{} coLOR B

2 Green 1 Green

1ERed 2 Red
As can be seen clearly from the result, the inner join returns rows
from the left table that match with the rows from the right table.

The following Venn diagram illustrates an inner join when
combining two result sets:

63




INNER JOIN

Oracle left join

The following statement joins the left table with the right table
using a left join (or a left outer join):

SQL>SELECT
a.id id_a,
a.color color_a,
b.id id_b,
b.color color_b
FROM
palette_ aa
LEFT JOIN palette b b ON a.color = b.color;

The output is shown as follows:

1D_A |{i cOLOR_A |{: ID_B |{} COLOR B

2 Green 1 Green
1 EBed 2Bed
3 Blue (null) {null)

4 Purple {null) {null)

The left join returns all rows from the left table with the matching
rows if available from the right table. If there is no matching row
found from the right table, the left join will have null values for
the columns of the right table:

64




The following Venn diagram illustrates the left join:

LEFT OUTER JOIN

Sometimes, we want to get only rows from the left table that do
not exist in the right table. To achieve this, we use the left join
and a WHERE clause to exclude the rows from the right table.

For example, the following statement shows colors that only
available in the palette_a but not palette_b:

SQL>SELECT

a.id id_a,

a.color color_a,

b.id id_b,

b.color color_b

FROM

palette_ aa

LEFT JOIN palette_b b ON a.color = b.color
WHERE b.id IS NULL;

Here is the output:

65




i/ ID_A |{} COLOR_A |{: ID_B |{} COLOR B |
3Blue (null) (null)
4 Purple {null) {null)

The following Venn diagram illustrates the left join with the
exclusion of rows from the right table:

LEFT OUTER JOIN — only
rows from the left table

Oracle right join

The right join or right outer join is a reversed version of the left
join. The right join makes a result set that contains all rows from
the right table with the matching rows from the left table. If there
IS no match, the left side will have nulls.

The following example use right join to join the left table to the
right table:

SQL>SELECT
a.idid_a,
a.color color_a,
b.id id_b,
b.color color_b
FROM

66




palette_aa
RIGHT JOIN palette_b b ON a.color = b.color;

Here is the output:

{/ID_A |{} COLOR_A |{} ID_B |{} COLOR_B

1 ER=d 2ZRed

2 Green 1 Gresn
{mall) (null) 4 Brown
{nmull) (null) 3Cyan

The following Venn diagram illustrates the right join:

RIGHT OUTER JOIN

Likewise, we can get only rows from the right table but not the
left table by adding a WHERE clause to the above statement as
shown in the following query:

SQL>SELECT
a.idid_a,
a.color color_a,
b.id id_b,
b.color color_b
FROM
palette_ aa
RIGHT JOIN palette_b b ON a.color = b.color

67




WHERE a.id IS NULL,;

Here is the output:

{/ ID_A |{} COLOR_A |{} ID_B |{} COLOR B
{mall) (nuall) 4 Brown
{mull) (nuall) 3 Cyan

The following Venn diagram illustrates the right join with the
exclusion of rows from the left table:

RIGHT OUTER JOIN — only
rows from the right table

Oracle full outer join

Oracle full outer join or full join returns a result set that contains
all rows from both left and right tables, with the matching rows
from both sides where available. If there is no match, the missing
side will have nulls.

The following example shows the full outer join of the left and
right tables:

SQL>SELECT

68



https://www.oracletutorial.com/oracle-basics/oracle-full-outer-join/
https://www.oracletutorial.com/oracle-basics/oracle-full-outer-join/

a.id id_a,

a.color color_a,

b.id id_b,

b.color color_b

FROM

palette_aa

FULL OUTER JOIN palette_b b ON a.color = b.color;

The following picture illustrates the result set of the full outer
join:

{+D_A |{t color_a [} DB |{: COLOR_B

1ERed 2 Red

2 Green 1 Green

3Blus {nmall) (null)

4 Purple {mall) (null)
{null) (null) 4 Brown
{null) {null) 3 Cyan

Note that the OUTER keyword is optional.

The following Venn diagram illustrates the full outer join:

FULL OUTER JOIN

To get a set of rows that are unique from the left and right tales,
you perform the same full join and then exclude the rows that you
don’t want from both sides using a WHERE clause as follows:

69



https://www.oracletutorial.com/oracle-basics/oracle-where/

SQL>SELECT
a.id id_a,
a.color color_a,
b.id id_b,
b.color color_b
FROM
palette_aa
FULL JOIN palette b b ON a.color = b.color
WHERE a.id IS NULL OR b.id IS NULL,;

Here is the result:

{4 1D_A |{} COLOR_A |} ID_B |{} COLOR_B

{null) {mull) 3Cyan
{null) (null) 4 Brown
3 Blue {null) {null)

4 Purple {null) (null)

The following Venn diagram illustrates the above operation:

FULL OUTER JOIN — only
rows unique to both tables

A self join is a join that joins a table with itself. A self join is

useful for comparing rows within a table or querying hierarchical
data.

70



https://www.oracletutorial.com/oracle-basics/oracle-select/

A self join uses other joins such as inner join and left join. In
addition, it uses the table alias to assign the table different names
in the same query.

Note that referencing the same table more than once in a query
without using table aliases cause an error.

The following illustrates how the table T is joined with itself:

SQL>SELECT
column_list
FROM
Tt
INNER JOIN T t2 ON
join_predicate;

Note that besides the inner join, you can use the left join in the
above statement.

Oracle Self Join example

Let’s look at some examples of using Oracle self join.

A) Using Oracle self join to query hierarchical data example

See the following employees table in the sample database.

EMPLOYEES

* EMPLOYEE_ID e
FIRST_NAME
LAST NAME
EMAIL
PHONE
HIRE_DATE
MANAGER_ID e
JOB_TITLE

71



https://www.oracletutorial.com/oracle-basics/oracle-joins/
https://www.oracletutorial.com/oracle-basics/oracle-inner-join/
https://www.oracletutorial.com/oracle-basics/oracle-left-join/
https://www.oracletutorial.com/oracle-basics/oracle-alias/
https://www.oracletutorial.com/oracle-basics/oracle-alias/
https://www.oracletutorial.com/oracle-basics/oracle-inner-join/

The employees table stores personal information such as id,
name, job title. In addition, it has the manager_id column that
stores the reporting lines between employees.

The President of the company, who does not report to anyone,
has a NULL value in the manager_id column. Other employees,
who have a manager, have a numeric value in the
manager_id column, which indicates the id of the manager.

To retrieve the employee and manager data from the employees
table, we use a self join as shown in the following statement:

SQL>SELECT

(e.first_name || ' ' || e.last_name) employee,

(m.first_name || " ' || m.last_name) manager,

e.job _title

FROM

employees e

LEFT JOIN employees m ON

m.employee_id = e.manager _id

ORDER BY

manager;
This query references to the employees table twice: one as e (for
employee) and another as m (for manager). The join predicate
matches employees and managers using the employee id and
manager _id columns.

The following picture shows the result:

72




EMPLOYEE | MANAGER | JOB_TITLE

Tommy Bailey President

Evie Harrison Ava Sullivan Sales Representative
Grace Ellis Ava Sullivan Sales Representative
Lily Fisher Ava Sullivan Sales Representative
Sophia Reynolds Ava Sullivan Sales Representative
Sophie Owens Ava Sullivan Sales Representative
Poppy Jordan Ava Sullivan Sales Representative
Louie Richardson Blake Cooper Frogrammer
Georgia Mills Callum Jenkins Shipping Clerk
Maisie Michols Callum Jenkins Shipping Clerk
Eleanor Grant Callum Jenkins Shipping Clerk
Hannah Knight Callum Jenkins Shipping Clerk
Connor Haves Callum lenkins Stock Clerk

B) Using Oracle self join to compare rows within the same
table example

The following statement finds all employees who have the same
hire dates:

SQL>SELECT
el.hire_date,
(el.first_ name || "' || el.last_name) employeel,
(e2.first_name || "' || e2.last_name) employee2
FROM

employees el
INNER JOIN employees €2 ON
el.employee id >e2.employee id
AND el.hire_date = e2.hire_date
ORDER BY
el.hire_date DESC,
employeel,
employee2;

73




HIRE_DATE |1r EMPLOYEE1 EMPLOYEEZ

07-DEC-16 ERory Eelly Ellioct Brooks
28-5EP-16 EKai Long Iyler Ramirez
20-AU0G-1& Sophia Beynolds  Rustin Flores
17-40G-16 Amelis Hudson Mohammad Peterson
21-JUN-1& Bella Stone Ivy Burns
14-JUN-1& Jasmine Hunt Seth Foster
07-JUN-1& Gracie Gardner Harper Spencer
07-JUN-1&6 ERose Stephens Gracie Gardner
07-JUN-16 Rose Stephens Harper Spencer
07-JUN-1& Summer Payne Gracie Gardner
07-JUN-16 Summer Payne Harper Spencer
07-JUN-1& Summer Payne Bose Stephens
21-AFR-16 Elsie Henry Matilda Stevens
10-APRE-1& Eeggies Simmons Liam Henderson
24-MRAR-16 Lucy Crawford Sienna Simpscon
24-MRAR-16¢ Lucy Crawford Sophie Owens
24-MRLR-16 Rosie Morales Lucy Crawford
24-MRAR-16 Rosie Morales Sienna Simpscn
24-MAR-1& PRosie Morales Sophie Owens

24-MRLE-16 Sienna Simpscn Sophie Owens

The el and e2 are table aliases for the same employees table.
Oracle GROUP BY

The GROUP BY clause is used in a select statement to group
rows into a set of summary rows by values of columns or
expressions. The GROUP BY clause returns one row per group.

The GROUP BY clause is often used with aggregate functions
such as avg(),count(),max(),min() and sum(). In this case, the
aggregate function returns the summary information per group.
For example, given groups of products in several categories, the
avg() function returns the average price of products in each
category, the count() function returns the total number of price of
products in each category, the max() function returns the
maximum price of products in each category, the min() function
returns the minimum price of products in each category, the

74




sum() function returns the sum of price of products in each
category.

The following illustrates the syntax of the Oracle GROUP BY
clause:

SQL>SELECT
column_list
FROM
T
GROUP BY c1,c2,c3;

The GROUP BY clause appears after the FROM clause. In case
WHERE clause is presented, the GROUP BY clause must be
placed after the WHERE clause as shown in the following query:

SQL>SELECT
column_list
FROM
T
WHERE
condition
GROUP BY c1, c2, ¢3;

The GROUP BY clause groups rows by values in the grouping
columns such as c1, c2 and ¢3. The GROUP BY clause must
contain only aggregates or grouping columns.

Oracle GROUP BY examples

We will use the following orders and order_items in the database
for the demonstration:

75




ORDERS

ORDER_ITEMS

*ORDER_ID
CUSTOMER_ID
STATUS
SALESMAN_ID
ORDER_DATE

*ORDER_ID
*ITEM_ID

FRODUCT_ID
QUANTITY
UNIT_PRICE

A) Oracle GROUP BY basic example

The following statement uses the GROUP BY clause to find
unique order statuses from the orders table:

SQL> SELECT
status
FROM
orders
GROUP BY
status;

STATUS
Shipped
Fending
Canceled

This statement has the same effect as the following statement that
uses the distinct operator:

SQL>SELECT
DISTINCT status
FROM
orders;
B) Oracle GROUP BY with an aggregate function example

The following statement returns the number of orders by
customers:

SQL>SELECT

76




customer _id,
COUNT/( order_id)

FROM
orders
GROUP BY
customer _id
ORDER BY
customer _id;

CUSTOMER _ID |4} COUNT{ORDER_ID)

L T = NN (R = T O IR A S B S |
A - W -9

In this example, we grouped the orders by customers and used the
function to return the number of orders per group.

To get more meaningful data, we can join the orders table with
the customers table as follows:

SQL>SELECT

name,

COUNT/( order_id)

FROM

orders

INNER JOIN customers
USING(customer _id)
GROUP BY
name
ORDER BY
name;

Here is the result:

77




NAME |{ COUNT(ORDER _ID)
AECOM
AbbVie
Abbott Laboratories
Aflac
Alcoa

American Electric Power
AutoMation

AutoZone

Baker Hughes

Bank of Mew York Mellon Corp.

e e = = N = -

C) Oracle GROUP BY with WHERE clause example

This example uses the GROUP BY clause with a where clause to
return the number of shipped orders for every customer:

SQL>SELECT
name,
COUNT( order_id)
FROM orders
INNER JOIN customers USING(customer _id)
WHERE
status = 'Shipped'
GROUP BY
name
ORDER BY
name;

Here is the output:

78




NAME COUNT({ORDER_ID)
AFCOM

LERVie

Abbott Laboratories
Lflac

Alcoa

Mmerican Electric Power
AutoNation

MutoZone

Baker Hughes

Becton Dickinson
Bristol-Myers Squibb
Centens

CenturylLink

Community Health Systems

DTE Energy

| N * T SR o T R o I = R T o o T T o R e

Dollar General

Note that the Oracle always evaluates the condition in the
WHERE clause before the GROUP BY clause.

Oracle HAVING

The HAVING clause is an optional clause of the select statement.
It is used to filter groups of rows returned by the group by clause.
This is why the HAVING clause is usually used with the GROUP
BY clause.

The following illustrates the syntax of the Oracle HAVING
clause:

SQL>SELECT
column_list
FROM
T

GROUP BY

cl

HAVING
group_condition;

79




In this statement, the HAVING clause appears immediately after
the GROUP BY clause.

If we use the HAVING clause without the GROUP BY clause,
the HAVING clause works like the where clause.

Note that the HAVING clause filters groups of rows while the
WHERE clause filters rows. This is a main difference between
the HAVING and WHERE clauses.

Oracle HAVING clause example

We will use the order items in the database for the
demonstration.

ORDER_ITEMS

*ORDER_ID

*ITEM_ID
FRODUCT_ID
QUANTITY
UMIT_PRICE

Simple Oracle HAVING example

The following statement uses the GROUP BY clause to retrieve
the orders and their values from the order_items table:

SQL>SELECT
order _id,
SUM( unit_price * quantity ) order_value
FROM
order_items
GROUP BY
order _id
ORDER BY

80




order_value DESC,;
Here is the result:

ORDER_ID |{} ORDER _VALUE
70 1278962.17
40 1269323.77
78  1198331.59

1 1143716.87
68  1088670.12
27  1084871.49
32 1081679.88
92  1050939.97
50 1043144.72
76 953702.32

104 950118.04
60 926416.51

To find the orders whose values are greater than 1 million, you
add a HAVING clause as follows:

SQL>SELECT
order_id,
SUM( unit_price * quantity ) order_value
FROM
order_items
GROUP BY
order_id
HAVING
SUM( unit_price * quantity ) > 1000000
ORDER BY
order_value DESC;

The result is:

81




ORDER_ID

ORDER_VALUE

70
46
78

1
68
27
32
92
29

1278962.17
12609323.77
1198331.59
1143716.87
1088670.12
1084871.49
1081679.88
1050939.97
1043144.72

In this example:

First, the GROUP BY clause groups orders by their ids and
calculates the order values using the sum() function.

Then, the HAVING clause filters all orders whose values are
less than or equal to 1,000,000.

Oracle UNION

The UNION operator is a set operator that combines result sets of
two or more select statements into a single result set.

The following illustrates the syntax of the UNION operator that
combines the result sets of two queries:

SQL>SELECT
column_list_1

FROM
T1
UNION

SELECT
column_list_1

FROM
T2;

In this statement, the column_list_1 and column_list 2 must have
the same number of columns presented in the same order. In

82




addition, the datatype of the corresponding column must be in the
same data type group.

By default, the UNION operator returns the unique rows from
both result sets. If we want to retain the duplicate rows, you
explicitly use UNION ALL as follows:

SQL>SELECT
column_list
FROM
T1

UNION ALL
SELECT
column_list
FROM

T2;

Oracle UNION illustration

Suppose, we have two tables T1 and T2:

T1 has three rows 1, 2 and 3
T2 also has three rows 2, 3 and 4

The following picture illustrates the UNION of T1 and T2 tables:

=

T1 T2 T1 UNION T2
The UNION removed the duplicate rows 2 and 3

Oracle UNION examples

83




See the following employees and contacts tables in the database.

EMPLOYEES

* EMPLOYEE_ID o
FIRST_MAME
LAST NAME
EMAIL
PHONE
HIRE_DATE
MANAGER_ID e
JOB_TITLE

CONTACTS

*CONTACT_ID
FIRST_MNAME
LAST_MNAME
EMAIL
FHOMNE
CUSTOMER_ID

Oracle UNION example

Suppose, we have to send out emails to the email addresses from
both employees and contacts tables. To accomplish this, first, we
need to compose a list of email addresses of employees and
contacts. And then send out the emails to the list.

The following statement uses the UNION operator to build a list
of contacts from the employees and contacts tables:

SQL>SELECT
first_name,
last_name,
email,
‘contact’
FROM

84




contacts
UNION SELECT
first_name,
last_name,

email,

‘employee’

FROM

employees;

Here is the result:

FIRST_NAME |{} LAST_NAME |{} EMAIL |{ 'conTacT’
Aaron Holder aaron.holder@gilead.com contact
Aaron Fatterson aaran.patterson@example.com employee
Abigail Palmer abigail.palmer@example.com employee
Adah Myers adah.myers@dom.com contact
Adam Jacobs adam.jacobs@univar.com contact
Adrienne Lang adrienne.lang@qualcomm.com contact
Agustina Conner agustina.conner@dollartree.com contact
Al Schultz al.schultz@altria.com contact
Albert Watson albert.watson@example.com employee
Aleshia Feese aleshia.reese@adp.com contact
Alessandra alessandra.estrada@ameriprise.com contact

Estrada

Oracle UNION ALL example

The following statement returns the unique last names
employees and contacts:

SQL>SELECT
last_name

FROM

employees
UNION SELECT
last_name

FROM

contacts

85

of




ORDER BY
last_name;

The query returned 357 unique last names.

LAST_MAME
Abbott
Alexander

Allison
Alston
Arnold
Atkinson
Avila
Bailey
Baldwin
Ball
Barnes
Barnett

However, if we use UNION ALL instead of UNION in the query
as follows:

SQL>SELECT
last_name
FROM
employees
UNION ALL SELECT
last_name
FROM
contacts
ORDER BY
last_name;

The query returns 426 rows. In addition, some rows are duplicate
e.g., Atkinson, Barnett. This is because the UNION ALL operator
does not remove duplicate rows.

86




{t LAST_NAME
Abbott
Alexander
Allison
Alston
Arnold
Atkinson
Atkinson
Avila
Bailey
Baldwin
Ball
Barnes
Barnett
Barnett
Barrera

Oracle UNION vs. JOIN

A UNION places a result set on top another, meaning that it
appends result sets vertically. However, a join such as inner join
or left join combines result sets horizontally.

The following picture illustrates the difference between union
and join:

1 Z 1 Append
2 UNION 3 |::> 2 result sets
vertically
4 3
4
d d id id [
result sets
! INNER 2 I::> 2 2 horizontally
2 3 3
JOIN
3 4

87




Oracle INTERSECT

The Oracle INTERSECT operator compares the result of two
queries and returns the distinct rows that are output by both
queries.

The following statement shows the syntax of the INTERSECT
operator:

SQL>SELECT

column_list_1

FROM

T1

INTERSECT

SELECT

column_list_2

FROM

T2;
Similar to the UNION operator, you must follow these rules
when using the INTERSECT operator:

The number and the order of columns must be the same in the
two queries.

The datatype of the corresponding columns must be in the same
data type group.

Oracle INTERSECT illustration

Suppose we have two queries that return the T1 and T2 result set.

T1 result set includes 1, 2, 3.
T2 result set includes 2, 3, 4.

The intersect of T1 and T2 result returns 2 and 3. Because these
are distinct values that are output by both queries.

88




The following picture illustrates the intersection of T1 and T2:

T1 T2 T1INTERSECT T2

The illustration showed that the INTERSECT returns the
intersection of two circles (or sets).

Oracle INTERSECT example

See the following contacts and employees tables in the sample
database.

CONTACTS

*CONTACT_ID
FIRST_MNAME
LAST_MNAME
EMAIL
FHOMNE
CUSTOMER_ID

EMPLOYEES

* EMPLOYEE_ID o
FIRST_NAME
LAST NAME
EMAIL
PHONE
HIRE_DATE
MANAGER_ID e
JOB_TITLE

89




The following statement uses the INTERSECT operator to get the
last names used by people in both contacts and employees tables:

SQL>SELECT
last_name
FROM
contacts
INTERSECT
SELECT
last_name
FROM
employees
ORDER BY
last_name;

LAST _MAME
Brooks
Bryant
Butler
Cole
Cruz
Ferguson
Flores
Ford
Grant
Hayes
Henderson
Henry
Jordan
Mason

Note that we placed the ORDER BY clause at the last queries to
sort the result set returned by the INTERSECT operator.

Oracle MINUS

The Oracle MINUS operator compares two queries and returns
distinct rows from the first query that are not output by the

90




second query. In other words, the MINUS operator subtracts one
result set from another.

The following illustrates the syntax of the Oracle MINUS
operator:

SQL>SELECT

column_list_1

FROM

T1

MINUS

SELECT

column_list_2

FROM

T2,
Similar to the union and intersect operators, the queries above
must conform with the following rules:

The number of columns and their orders must match.
The datatype of the corresponding columns must be in the same
data type group such as numeric or character.

Suppose the first query returns the T1 result set that includes 1, 2
and 3. And the second query returns the T2 result set that
includes 2, 3 and 4.

The following picture illustrates the result of the MINUS of T1
and T2:

T1 T2 T1 MINUS T2

91




Oracle MINUS examples

See the following contacts and employees tables in the sample

database:
EMPLOYEES
CONTACTS *EMFLOYEE_ID

* CONTACT_ID FIRST_NAME
FIRST NAME LAST_NAME
LAST_NAME EMAIL
EMAL PHONE
PHONE HIRE_DATE
CUSTOMER_ID MANAGER_ID

JOB_TITLE

The following statement returns distinct last names from the
query to the left of the MINUS operator which are not also found

in the right query.

SQL>SELECT
last_name
FROM
contacts
MINUS
SELECT
last_name
FROM
employees

ORDER BY
last_name;

Here are the last names returned by the first query but are not
found in the result set of the second query:

92




LAST_MAME
Abbott
Allison
Alston
Arnold
Atkinson
Avila
Baldwsin
Ball
Barnett
Barrera

See the following products and inventories tables:

PRODUCTS
* PRODUCT_ID
PRODUCT_NAME
DESCRIPTION INVENTORIES
STANDARD_COST * PRODUGCT_ID
LIST_PRICE * WAREHOUSE_ID
CATEGORY_ID QUANTITY

The following statement returns a list of product id from the
products table, but do not exist in the inventories table:

SQL>SELECT
product_id
FROM
products
MINUS
SELECT
product_id
FROM
inventories;

Here is the result;

93




PRODUCT_ID

1
10
16
28
45
48
49
a1
52
a3
a5

94




STUDENTS’ LABORATORY ACTIVITY

1. Display the name job, salary for all employees whose job is
Clerk or Analyst their salary is not equal to Rs.1000, Rs.3000,
Rs.5000.

2. Create a unique listing of all jobs that are in department 30.

3. Write a query to display the name, department number and
department name for all employees.

4. Write a query to display the employee name, department
name, and location of all employee who earn a commission.

5. Write a query to display the name, job, department number and
department name for all employees who works in DALLAS.

6. Write a query to display the number of people with the same
job. Save the query @ run it.

7. Create a query to display the employee name and hire date for
all employees in same department.

8. Display the employee name and salary of all employees who
report to KING.

95




Integrity Constraints, TCL and DCL

TYPES OF INTEGRITY CONSTRAINTS:
1. Check constraint.
2. Entity Integrity Constraint.
3. Referential integrity constraint

1. Check Constraint: The value that each attribute or data item
can be assigned is expressed in the form of data type, a range
of values or a value from a specified set called as Check
constraint. Example: In the relation EMPLOYEE the domain
of the attribute Salary may be in the range of 12000 to
300000 or Mark secured by a student in STUDENT relation
must be less than or equal to the Total mark.

Creating Check constraint syntax

SQL>CREATE TABLE table name (

column_name data_type CHECK (expression),

);

In this syntax, a check constraint consists of the keyword
CHECK followed by an expression in parentheses. The
expression should always involve the column thus
constrained. Otherwise, the check constraint does not make
any sense.

If we want to assign the check constraint an explicit name,

we use the CONSTRAINT clause below:
CONSTRAINT check_constraint_name
CHECK (expression);

96




Add Check constraint to a table

To add a check constraint to an existing table, we use the
alter table add constraint statement as follows:
SQL>ALTER TABLE table name ADD CONSTRAINT
check_constraint_name CHECK(expression);
To drop a check constraint, we use the ALTER TABLE

DROP CONSTRAINT statement as follows:
SQL> ALTER TABLE table_ name DROP CONSTRAINT
check_constraint_name;

2. Entity Integrity Constraint:The domain values for any
attribute that forms a primary key of a relation are validated
against the domain constraint, called Entity Integrity Constraint.

It does not to allow null values and redundant values
against a primary key.

Adding a primary key to a table in ORACLE:

To add a primary key constraint to an existing table:
SQL>ALTER TABLE table name ADD CONSTRAINT
constraint_name PRIMARY KEY (columnl, column2, ...);
Example: SQL>ALTER TABLE vendors ADD CONSTRAINT
pk_vendors PRIMARY KEY (vendor _id);

Dropping an Oracle PRIMARY KEY constraint

To drop a PRIMARY KEY constraint from a table:
SQL>ALTER TABLE table name DROP CONSTRAINT
primary_key constraint_name;

To drop the primary key constraint of the vendors table as

follows:
SQL>ALTER TABLE vendors DROP CONSTRAINT
pk_vendors;

97




3.Referential integrity constraint:

The constraint that the relation R2 must not contain any
unmatched foreign key values and it must contain foreign key
values matching to the corresponding(Having the same Domain)
primary key of another relation R1 to which it refers to, is called
as Referentital Integrity Constraint.

Two constraints while an attempt to update the relations are
made:

(a) We can not delete the records from relation R1 having the
matching foreign key values in the relation R2,

(b) We can not insert records into the relation R2 which is not
having a corresponding primary key in the Relation R1.

For Ex: In the two relations Shipment(SID,PID,QTY) and
Supplier(SID, City,Status), the domain of the SID in Supplier
and SID in Shipment are same and SID in Shipment is the
foreign key referencing to the SID in Supplier .

Syntax in ORACLE:
SQL>CREATE TABLE child_table (

CONSTRAINT fk_name
FOREIGN KEY (coll, col2,...) REFERENCES
parent_table(coll,col2) );

First, to explicitly assign the foreign key constraint a name, we
use the CONSTRAINT clause followed by the name. The
CONSTRAINT clause is optional. If we omit it, Oracle will
assign a system-generated name to the foreign key constraint.

98




Second, we specify the FOREIGN KEY clause to define one or
more column as a foreign key and parent table with columns to
which the foreign key columns reference.

Unlike the primary key constraint, a table may have more than
one foreign key constraint.

Transaction Control Language(TCL)

A transaction is a logical unit of work. A transaction begins with
an executable SQL statement and ends explicitly with either
rollback or commit statements.

Commit : This command is used to successfully end a
transaction. It erases all savepoints in the transaction thus
releasing all the locks.

Syntax
SQL>commit;

Rollback: This command is used to undo the work done in the
current transaction.

Syntax
SQL>rollback;
Data Control Language(DCL)

It provides users with privilege commands. The owner of the
database object can allow other database users access to the
database .

99




Grant Privilege command

Syntax

SQL>grant privileges on objectname to username;
Example

SQL>grant select,update on persons to manager;

After successful execution of the above command “grant
succeeded” will be displayed and it grants privileges like select
and update on persons to manager.

Revoke Privilege command

Syntax

SQL>revoke privileges on objectname from username;
Example

SQL>revoke select,update on persons from manager;

After successful execution of the above command “revoke
succeeded” will be displayed and it revokes all the privileges
like select and update on persons from manager.

100




STUDENTS’ LABORATORY ACTIVITY

1.

Create a student database table using create command using
Regd. No as Primary Key , insert data of your class.

. Create a supplier database table using sid as Primary Key.

Insert 5 records.

. Create a part database table using pid as Primary Key . Insert

5 records.

. Create a shipment database table using combination of sid

and pid as Primary Key, sid as a foreign key referencing to
the sid in supplier table and pid as a foreign key referencing
to the pid in part table . Insert 5 records.

. Practice of all Data Retrieval, DML, DDL, TCL and DCL

commands used in Oracle by writing queries.

101




	GETTING  STARTED WITH ORACLE
	What is a database?
	Oracle Database features
	Character data types
	Number data type
	Date data types : They are used to store date and time in a table. Default date data type is “dd-mon-yy”. To view system’s date and time we can use the SQL function called sysdate(). Oracle uses its own format to store date in a fixed length of 7 byte...
	RAW and LONG RAW data types
	BFILE Datatype
	BLOB Datatype
	CLOB Datatype
	NCLOB Datatype
	Oracle CREATE TABLE statement example
	Oracle ALTER TABLE examples
	Oracle ALTER TABLE ADD column examples
	Oracle ALTER TABLE MODIFY column examples
	Oracle ALTER TABLE DROP COLUMN example

	Oracle DROP TABLE examples
	Oracle SELECT examples
	A) query data from a single column
	B)Querying data from multiple columns
	C)Querying data from all columns of a table

	Oracle ORDER BY clause examples
	A) Sorting rows by a column example
	B) Sorting rows by multiple columns example

	Oracle SELECT DISTINCT examples
	A) Oracle SELECT DISTINCT one column example
	B) Oracle SELECT DISTINCT multiple columns example

	Oracle WHERE examples
	A) Selecting rows by using a simple equality operator
	B) Select rows using comparison operator
	C) Select rows that meet some conditions
	D) Selecting rows that have a value between two values
	E) Selecting rows that are in a list of values
	F) Selecting rows which contain value as a part of a string
	Using Oracle column alias to make column heading more meaningful.

	Oracle AND operator examples
	A) Oracle AND to combine two Boolean expressions example
	B) Oracle AND to combine more than two Boolean expressions example
	 C) Oracle AND to combine with OR operator example

	Oracle OR operator examples
	A)using Oracle OR operator to combine two Boolean expressions example
	B) Using Oracle OR operator to combine more than two Boolean expressions example
	C) Using Oracle OR operator to combine with AND operator example
	Oracle NOT IN example
	Oracle IN subquery example
	Oracle NOT IN subquery example
	E) Oracle IN vs. OR
	1) expression
	2) pattern

	Oracle LIKE examples
	A) % wildcard character examples
	B) _ wildcard character examples
	C) Mixed wildcard characters example

	Setting up sample tables
	Oracle inner join
	Oracle left join
	Oracle right join
	Oracle full outer join
	Oracle Self Join example
	A) Using Oracle self join to query hierarchical data example
	B) Using Oracle self join to compare rows within the same table example

	Oracle GROUP BY examples
	A) Oracle GROUP BY basic example
	B) Oracle GROUP BY with an aggregate function example
	C) Oracle GROUP BY with WHERE clause example

	Oracle HAVING clause example
	Simple Oracle HAVING example

	Oracle UNION illustration
	Oracle UNION examples
	Oracle UNION example
	Oracle UNION ALL example

	Oracle UNION vs. JOIN
	Oracle INTERSECT illustration
	Oracle INTERSECT example
	Oracle MINUS examples
	Creating Check constraint syntax
	Add Check constraint to a table
	Adding a primary key to a table in ORACLE:
	Dropping an Oracle PRIMARY KEY constraint

